Do you want to publish a course? Click here

Status of low mass LSP in SUSY

55   0   0.0 ( 0 )
 Added by Rahool Kumar Barman
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In this article we review the case for a light ($< m_{h_{125}}/2$) neutralino and sneutrino being a viable Dark Matter (DM) candidate in Supersymmetry(SUSY). To that end we recapitulate, very briefly, three issues related to the DM which impact the discussions : calculation of DM relic density, detection of the DM in Direct and Indirect experiments and creation /detection at the Colliders. In case of SUSY, the results from Higgs and SUSY searches at the colliders also have implications for the DM mass and couplings. In view of the constraints coming from all these sources, the possibility of a light neutralino is all but ruled out for the constrained MSSM : cMSSM. The pMSSM, where the gaugino masses are not related at high scale, is also quite constrained and under tension in case of thermal DM and will be put to very stern test in the near future in Direct Detection (DD) experiments as well as by the LHC analyses. However in the pMSSM with modified cosmology and hence non-thermal DM or in the NMSSM, a light neutralino is much more easily accommodated. A light RH sneutrino is also still a viable DM candidate although it requires extending the MSSM with additional singlet neutrino superfields. All of these possibilities can be indeed tested jointly in the upcoming SUSY-electroweakino and Higgs searches at the HL/HE luminosity LHC, the upcoming experiments for the Direct Detection (DD) and indirect detection for the DM as well as the high precision electron-positron colliders under planning.



rate research

Read More

We study the neutralino sector of the Minimal Non-minimal Supersymmetric Standard Model (MNSSM) where the $mu$ problem of the Minimal Supersymmetric Standard Model (MSSM) is solved without accompanying problems related with the appearance of domain walls. In the MNSSM as in the MSSM the lightest neutralino can be the absolutely stable lightest supersymmetric particle (LSP) providing a good candidate for the cold dark matter component of the Universe. In contrast with the MSSM the allowed range of the mass of the lightest neutralino in the MNSSM is limited. We establish the theoretical upper bound on the lightest neutralino mass in the framework of this model and obtain an approximate solution for this mass.
39 - B. Allanach , S. Kraml , W. Porod 2002
We provide a comparison of the results of four SUSY mass spectrum calculations in mSUGRA: Isajet, SuSpect, SoftSusy, and SPheno. In particular, we focus on the high tan(beta) and focus point regions, where the differences in the results are known to be large.
Supersymmetry, a new symmetry that relates bosons and fermions in particle physics, still escapes observation. Search for supersymmetry is one of the main aims of the Large Hadron Collider. The other possible manifestation of supersymmetry is the Dark Matter in the Universe. The present lectures contain a brief introduction to supersymmetry in particle physics. The main notions of supersymmetry are introduced. The supersymmetric extension of the Standard Model -- the Minimal Supersymmetric Standard Model -- is considered in more detail. Phenomenological features of the Minimal Supersymmetric Standard Model as well as possible experimental signatures of supersymmetry at the Large Hadron Collider are described. The present limits on supersymmetric particles are presented and the allowed region of parameter space of the MSSM is shown.
148 - Yue Zhang 2008
We show that in supersymmetric left-right models (SUSYLR), the upper bound on the lightest neutral Higgs mass can be appreciably higher than that in minimal supersymmetric standard model (MSSM). The exact magnitude of the bound depends on the scale of parity restoration and can be 10-20 GeV above the MSSM bound if mass of the right-handed gauge boson $W_R$ is in the TeV range. An important implication of our result is that since SUSYLR models provide a simple realization of seesaw mechanism for neutrino masses, measurement of the Higgs boson mass could provide an independent probe of a low seesaw scale.
We describe a kinematic method which is capable of determining the overall mass scale in SUSY-like events at a hadron collider with two missing (dark matter) particles. We focus on the kinematic topology in which a pair of identical particles is produced with each decaying to two leptons and an invisible particle (schematically, $ppto YY+jets$ followed by each $Y$ decaying via $Yto ell Xto ellellN$ where $N$ is invisible). This topology arises in many SUSY processes such as squark and gluino production and decay, not to mention $tanti t$ di-lepton decays. In the example where the final state leptons are all muons, our errors on the masses of the particles $Y$, $X$ and $N$ in the decay chain range from 4 GeV for 2000 events after cuts to 13 GeV for 400 events after cuts. Errors for mass differences are much smaller. Our ability to determine masses comes from considering all the kinematic information in the event, including the missing momentum, in conjunction with the quadratic constraints that arise from the $Y$, $X$ and $N$ mass-shell conditions. Realistic missing momentum and lepton momenta uncertainties are included in the analysis.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا