Do you want to publish a course? Click here

Light Higgs Mass Bound in SUSY Left-Right Models

157   0   0.0 ( 0 )
 Added by Yue Zhang
 Publication date 2008
  fields
and research's language is English
 Authors Yue Zhang




Ask ChatGPT about the research

We show that in supersymmetric left-right models (SUSYLR), the upper bound on the lightest neutral Higgs mass can be appreciably higher than that in minimal supersymmetric standard model (MSSM). The exact magnitude of the bound depends on the scale of parity restoration and can be 10-20 GeV above the MSSM bound if mass of the right-handed gauge boson $W_R$ is in the TeV range. An important implication of our result is that since SUSYLR models provide a simple realization of seesaw mechanism for neutrino masses, measurement of the Higgs boson mass could provide an independent probe of a low seesaw scale.



rate research

Read More

We assess the sensitivity of the LHC, its high energy upgrade, and a prospective 100 TeV hadronic collider to the Dirac Yukawa coupling of the heavy neutrinos in left-right symmetric models (LRSMs). We focus specifically on the trilepton final state in regions of parameter space yielding prompt decays of the right-handed gauge bosons ($W_R$) and neutrinos ($N_R$). In the minimal LRSM, the Dirac Yukawa couplings are completely fixed in terms of the mass matrices for the heavy and light neutrinos. In this case, the trilepton signal provides a direct probe of the Dirac mass term for a fixed $W_R$ and $N_R$ mass. We find that while it is possible to discover the $W_R$ at the LHC, probing the Dirac Yukawa couplings will require a 100 TeV $pp$ collider. We also show that the observation of the trilepton signal at the LHC would indicate the presence of a non-minimal LRSM scenario.
In this work, we propose minimal realizations for generating Dirac neutrino masses in the context of a right-handed abelian gauge extension of the Standard Model. Utilizing only $U(1)_R$ symmetry, we address and analyze the possibilities of Dirac neutrino mass generation via (a) textit{tree-level seesaw} and (b) textit{radiative correction at the one-loop level}. One of the presented radiative models implements the attractive textit{scotogenic} model that links neutrino mass with Dark Matter (DM), where the stability of the DM is guaranteed from a residual discrete symmetry emerging from $U(1)_R$. Since only the right-handed fermions carry non-zero charges under the $U(1)_R$, this framework leads to sizable and distinctive Left-Right asymmetry as well as Forward-Backward asymmetry discriminating from $U(1)_{B-L}$ models and can be tested at the colliders. We analyze the current experimental bounds and present the discovery reach limits for the new heavy gauge boson $Z^{prime}$ at the LHC and ILC. Furthermore, we also study the associated charged lepton flavor violating processes, dark matter phenomenology and cosmological constraints of these models.
249 - E. Kh. Akhmedov 2005
We consider type I+II seesaw mechanism, where the exchanges of both right-handed neutrinos and isotriplet Higgs bosons contribute to the neutrino mass. Working in the left-right symmetric framework and assuming the mass matrix of light neutrinos $m_ u$ and the Dirac-type Yukawa couplings to be known, we find the triplet Yukawa coupling matrix $f$, which carries the information about the masses and mixing of the right-handed neutrinos. We show that in this case there exists a duality: for any solution $f$, there is a dual solution $hat{f}=m_ u/v_L-f$, where $v_L$ is the VEV of the triplet Higgs. Thus, unlike in pure type I (II) seesaw, there is no unique allowed structure for the matrix $f$. For $n$ lepton generations the number of solutions is $2^n$. We develop an exact analytic method of solving the seesaw non-linear matrix equation for $f$.
A fresh analysis of Left right symmetric supersymmetric models in the generic case where the scale of right handed symmetry breaking $M_R >> M_{SUSY}sim M_W$ is presented. We conclude that the low energy effective theory for such models is essentially the MSSM with R parity (and therefore B,L symmetry) but the spectrum includes heavy conjugate neutrino supermultiplets that permit a seesaw mechanism and several characteristic charged supermultiplets over and above those of the MSSM.
75 - K.S. Babu , Anil Thapa 2020
We develop a minimal left-right symmetric model based on the gauge group $SU(3)_C otimes SU(2)_L otimes SU(2)_R otimes U(1)_{B-L}$ wherein the Higgs triplets conventionally employed for symmetry breaking are replaced by Higgs doublets. Majorana masses for the right-handed neutrinos $( u_R$) are induced via two-loop diagrams involving a charged scalar field $eta^+$. This setup is shown to provide excellent fits to neutrino oscillation data via the seesaw mechanism for the entire range of the $W_R^pm$ mass, from TeV to the GUT scale. When the $W_R^pm$ mass is at the TeV scale, the $ u_R$ masses turn out to be in the MeV range. We analyze constraints from low energy experiments, early universe cosmology and from supernova 1987a on such a scenario and show its consistency. We also study collider implications of a relatively light $eta^+$ scalar through its decay into multi-lepton final states and derive a lower limit of 390 GeV on its mass from the LHC, which can be improved to 555 GeV in its high luminosity run.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا