No Arabic abstract
Partial label learning (PLL) is a class of weakly supervised learning where each training instance consists of a data and a set of candidate labels containing a unique ground truth label. To tackle this problem, a majority of current state-of-the-art methods employs either label disambiguation or averaging strategies. So far, PLL methods without such techniques have been considered impractical. In this paper, we challenge this view by revealing the hidden power of the oldest and naivest PLL method when it is instantiated with deep neural networks. Specifically, we show that, with deep neural networks, the naive model can achieve competitive performances against the other state-of-the-art methods, suggesting it as a strong baseline for PLL. We also address the question of how and why such a naive model works well with deep neural networks. Our empirical results indicate that deep neural networks trained on partially labeled examples generalize very well even in the over-parametrized regime and without label disambiguations or regularizations. We point out that existing learning theories on PLL are vacuous in the over-parametrized regime. Hence they cannot explain why the deep naive method works. We propose an alternative theory on how deep learning generalize in PLL problems.
Partial-label (PL) learning is a typical weakly supervised classification problem, where a PL of an instance is a set of candidate labels such that a fixed but unknown candidate is the true label. For PL learning, there are two lines of research: (a) the identification-based strategy (IBS) purifies each label set and extracts the true label; (b) the average-based strategy (ABS) treats all candidates equally for training. In the past two decades, IBS was a much hotter topic than ABS, since it was believed that IBS is more promising. In this paper, we theoretically analyze ABS and find it also promising in the sense of the robustness of its loss functions. Specifically, we consider five problem settings for the generation of clean or noisy PLs, and we prove that average PL losses with bounded multi-class losses are always robust under mild assumptions on the domination of true labels, while average PL losses with unbounded multi-class losses (e.g., the cross-entropy loss) may not be robust. We also conduct experiments to validate our theoretical findings. Note that IBS is heuristic, and we cannot prove its robustness by a similar proof technique; hence, ABS is more advantageous from a theoretical point of view, and it is worth paying attention to the design of more advanced PL learning methods following ABS.
Partial-label learning (PLL) is a multi-class classification problem, where each training example is associated with a set of candidate labels. Even though many practical PLL methods have been proposed in the last two decades, there lacks a theoretical understanding of the consistency of those methods-none of the PLL methods hitherto possesses a generation process of candidate label sets, and then it is still unclear why such a method works on a specific dataset and when it may fail given a different dataset. In this paper, we propose the first generation model of candidate label sets, and develop two novel PLL methods that are guaranteed to be provably consistent, i.e., one is risk-consistent and the other is classifier-consistent. Our methods are advantageous, since they are compatible with any deep network or stochastic optimizer. Furthermore, thanks to the generation model, we would be able to answer the two questions above by testing if the generation model matches given candidate label sets. Experiments on benchmark and real-world datasets validate the effectiveness of the proposed generation model and two PLL methods.
Partial-label learning (PLL) generally focuses on inducing a noise-tolerant multi-class classifier by training on overly-annotated samples, each of which is annotated with a set of labels, but only one is the valid label. A basic promise of existing PLL solutions is that there are sufficient partial-label (PL) samples for training. However, it is more common than not to have just few PL samples at hand when dealing with new tasks. Furthermore, existing few-shot learning algorithms assume precise labels of the support set; as such, irrelevant labels may seriously mislead the meta-learner and thus lead to a compromised performance. How to enable PLL under a few-shot learning setting is an important problem, but not yet well studied. In this paper, we introduce an approach called FsPLL (Few-shot PLL). FsPLL first performs adaptive distance metric learning by an embedding network and rectifying prototypes on the tasks previously encountered. Next, it calculates the prototype of each class of a new task in the embedding network. An unseen example can then be classified via its distance to each prototype. Experimental results on widely-used few-shot datasets (Omniglot and miniImageNet) demonstrate that our FsPLL can achieve a superior performance than the state-of-the-art methods across different settings, and it needs fewer samples for quickly adapting to new tasks.
A deep equilibrium model uses implicit layers, which are implicitly defined through an equilibrium point of an infinite sequence of computation. It avoids any explicit computation of the infinite sequence by finding an equilibrium point directly via root-finding and by computing gradients via implicit differentiation. In this paper, we analyze the gradient dynamics of deep equilibrium models with nonlinearity only on weight matrices and non-convex objective functions of weights for regression and classification. Despite non-convexity, convergence to global optimum at a linear rate is guaranteed without any assumption on the width of the models, allowing the width to be smaller than the output dimension and the number of data points. Moreover, we prove a relation between the gradient dynamics of the deep implicit layer and the dynamics of trust region Newton method of a shallow explicit layer. This mathematically proven relation along with our numerical observation suggests the importance of understanding implicit bias of implicit layers and an open problem on the topic. Our proofs deal with implicit layers, weight tying and nonlinearity on weights, and differ from those in the related literature.
Partial multi-label learning (PML) models the scenario where each training instance is annotated with a set of candidate labels, and only some of the labels are relevant. The PML problem is practical in real-world scenarios, as it is difficult and even impossible to obtain precisely labeled samples. Several PML solutions have been proposed to combat with the prone misled by the irrelevant labels concealed in the candidate labels, but they generally focus on the smoothness assumption in feature space or low-rank assumption in label space, while ignore the negative information between features and labels. Specifically, if two instances have largely overlapped candidate labels, irrespective of their feature similarity, their ground-truth labels should be similar; while if they are dissimilar in the feature and candidate label space, their ground-truth labels should be dissimilar with each other. To achieve a credible predictor on PML data, we propose a novel approach called PML-LFC (Partial Multi-label Learning with Label and Feature Collaboration). PML-LFC estimates the confidence values of relevant labels for each instance using the similarity from both the label and feature spaces, and trains the desired predictor with the estimated confidence values. PML-LFC achieves the predictor and the latent label matrix in a reciprocal reinforce manner by a unified model, and develops an alternative optimization procedure to optimize them. Extensive empirical study on both synthetic and real-world datasets demonstrates the superiority of PML-LFC.