No Arabic abstract
Partial-label learning (PLL) is a multi-class classification problem, where each training example is associated with a set of candidate labels. Even though many practical PLL methods have been proposed in the last two decades, there lacks a theoretical understanding of the consistency of those methods-none of the PLL methods hitherto possesses a generation process of candidate label sets, and then it is still unclear why such a method works on a specific dataset and when it may fail given a different dataset. In this paper, we propose the first generation model of candidate label sets, and develop two novel PLL methods that are guaranteed to be provably consistent, i.e., one is risk-consistent and the other is classifier-consistent. Our methods are advantageous, since they are compatible with any deep network or stochastic optimizer. Furthermore, thanks to the generation model, we would be able to answer the two questions above by testing if the generation model matches given candidate label sets. Experiments on benchmark and real-world datasets validate the effectiveness of the proposed generation model and two PLL methods.
Partial multi-label learning (PML) models the scenario where each training instance is annotated with a set of candidate labels, and only some of the labels are relevant. The PML problem is practical in real-world scenarios, as it is difficult and even impossible to obtain precisely labeled samples. Several PML solutions have been proposed to combat with the prone misled by the irrelevant labels concealed in the candidate labels, but they generally focus on the smoothness assumption in feature space or low-rank assumption in label space, while ignore the negative information between features and labels. Specifically, if two instances have largely overlapped candidate labels, irrespective of their feature similarity, their ground-truth labels should be similar; while if they are dissimilar in the feature and candidate label space, their ground-truth labels should be dissimilar with each other. To achieve a credible predictor on PML data, we propose a novel approach called PML-LFC (Partial Multi-label Learning with Label and Feature Collaboration). PML-LFC estimates the confidence values of relevant labels for each instance using the similarity from both the label and feature spaces, and trains the desired predictor with the estimated confidence values. PML-LFC achieves the predictor and the latent label matrix in a reciprocal reinforce manner by a unified model, and develops an alternative optimization procedure to optimize them. Extensive empirical study on both synthetic and real-world datasets demonstrates the superiority of PML-LFC.
Partial-label learning (PLL) is a typical weakly supervised learning problem, where each training instance is equipped with a set of candidate labels among which only one is the true label. Most existing methods elaborately designed learning objectives as constrained optimizations that must be solved in specific manners, making their computational complexity a bottleneck for scaling up to big data. The goal of this paper is to propose a novel framework of PLL with flexibility on the model and optimization algorithm. More specifically, we propose a novel estimator of the classification risk, theoretically analyze the classifier-consistency, and establish an estimation error bound. Then we propose a progressive identification algorithm for approximately minimizing the proposed risk estimator, where the update of the model and identification of true labels are conducted in a seamless manner. The resulting algorithm is model-independent and loss-independent, and compatible with stochastic optimization. Thorough experiments demonstrate it sets the new state of the art.
Metric learning is an important family of algorithms for classification and similarity search, but the robustness of learned metrics against small adversarial perturbations is less studied. In this paper, we show that existing metric learning algorithms, which focus on boosting the clean accuracy, can result in metrics that are less robust than the Euclidean distance. To overcome this problem, we propose a novel metric learning algorithm to find a Mahalanobis distance that is robust against adversarial perturbations, and the robustness of the resulting model is certifiable. Experimental results show that the proposed metric learning algorithm improves both certified robust errors and empirical robust errors (errors under adversarial attacks). Furthermore, unlike neural network defenses which usually encounter a trade-off between clean and robust errors, our method does not sacrifice clean errors compared with previous metric learning methods. Our code is available at https://github.com/wangwllu/provably_robust_metric_learning.
In this paper, we establish a theoretical comparison between the asymptotic mean-squared error of Double Q-learning and Q-learning. Our result builds upon an analysis for linear stochastic approximation based on Lyapunov equations and applies to both tabular setting and with linear function approximation, provided that the optimal policy is unique and the algorithms converge. We show that the asymptotic mean-squared error of Double Q-learning is exactly equal to that of Q-learning if Double Q-learning uses twice the learning rate of Q-learning and outputs the average of its two estimators. We also present some practical implications of this theoretical observation using simulations.
As an important branch of weakly supervised learning, partial label learning deals with data where each instance is assigned with a set of candidate labels, whereas only one of them is true. Despite many methodology studies on learning from partial labels, there still lacks theoretical understandings of their risk consistent properties under relatively weak assumptions, especially on the link between theoretical results and the empirical choice of parameters. In this paper, we propose a family of loss functions named textit{Leveraged Weighted} (LW) loss, which for the first time introduces the leverage parameter $beta$ to consider the trade-off between losses on partial labels and non-partial ones. From the theoretical side, we derive a generalized result of risk consistency for the LW loss in learning from partial labels, based on which we provide guidance to the choice of the leverage parameter $beta$. In experiments, we verify the theoretical guidance, and show the high effectiveness of our proposed LW loss on both benchmark and real datasets compared with other state-of-the-art partial label learning algorithms.