Do you want to publish a course? Click here

Confidence Estimation for Attention-based Sequence-to-sequence Models for Speech Recognition

110   0   0.0 ( 0 )
 Added by Qiujia Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

For various speech-related tasks, confidence scores from a speech recogniser are a useful measure to assess the quality of transcriptions. In traditional hidden Markov model-based automatic speech recognition (ASR) systems, confidence scores can be reliably obtained from word posteriors in decoding lattices. However, for an ASR system with an auto-regressive decoder, such as an attention-based sequence-to-sequence model, computing word posteriors is difficult. An obvious alternative is to use the decoder softmax probability as the model confidence. In this paper, we first examine how some commonly used regularisation methods influence the softmax-based confidence scores and study the overconfident behaviour of end-to-end models. Then we propose a lightweight and effective approach named confidence estimation module (CEM) on top of an existing end-to-end ASR model. Experiments on LibriSpeech show that CEM can mitigate the overconfidence problem and can produce more reliable confidence scores with and without shallow fusion of a language model. Further analysis shows that CEM generalises well to speech from a moderately mismatched domain and can potentially improve downstream tasks such as semi-supervised learning.



rate research

Read More

Recently sequence-to-sequence models have started to achieve state-of-the-art performance on standard speech recognition tasks when processing audio data in batch mode, i.e., the complete audio data is available when starting processing. However, when it comes to performing run-on recognition on an input stream of audio data while producing recognition results in real-time and with low word-based latency, these models face several challenges. For many techniques, the whole audio sequence to be decoded needs to be available at the start of the processing, e.g., for the attention mechanism or the bidirectional LSTM (BLSTM). In this paper, we propose several techniques to mitigate these problems. We introduce an additional loss function controlling the uncertainty of the attention mechanism, a modified beam search identifying partial, stable hypotheses, ways of working with BLSTM in the encoder, and the use of chunked BLSTM. Our experiments show that with the right combination of these techniques, it is possible to perform run-on speech recognition with low word-based latency without sacrificing in word error rate performance.
Acoustic-to-Word recognition provides a straightforward solution to end-to-end speech recognition without needing external decoding, language model re-scoring or lexicon. While character-based models offer a natural solution to the out-of-vocabulary problem, word models can be simpler to decode and may also be able to directly recognize semantically meaningful units. We present effective methods to train Sequence-to-Sequence models for direct word-level recognition (and character-level recognition) and show an absolute improvement of 4.4-5.0% in Word Error Rate on the Switchboard corpus compared to prior work. In addition to these promising results, word-based models are more interpretable than character models, which have to be composed into words using a separate decoding step. We analyze the encoder hidden states and the attention behavior, and show that location-aware attention naturally represents words as a single speech-word-vector, despite spanning multiple frames in the input. We finally show that the Acoustic-to-Word model also learns to segment speech into words with a mean standard deviation of 3 frames as compared with human annotated forced-alignments for the Switchboard corpus.
Integrating an external language model into a sequence-to-sequence speech recognition system is non-trivial. Previous works utilize linear interpolation or a fusion network to integrate external language models. However, these approaches introduce external components, and increase decoding computation. In this paper, we instead propose a knowledge distillation based training approach to integrating external language models into a sequence-to-sequence model. A recurrent neural network language model, which is trained on large scale external text, generates soft labels to guide the sequence-to-sequence model training. Thus, the language model plays the role of the teacher. This approach does not add any external component to the sequence-to-sequence model during testing. And this approach is flexible to be combined with shallow fusion technique together for decoding. The experiments are conducted on public Chinese datasets AISHELL-1 and CLMAD. Our approach achieves a character error rate of 9.3%, which is relatively reduced by 18.42% compared with the vanilla sequence-to-sequence model.
111 - Qiujia Li , Yu Zhang , Bo Li 2021
End-to-end models with auto-regressive decoders have shown impressive results for automatic speech recognition (ASR). These models formulate the sequence-level probability as a product of the conditional probabilities of all individual tokens given their histories. However, the performance of locally normalised models can be sub-optimal because of factors such as exposure bias. Consequently, the model distribution differs from the underlying data distribution. In this paper, the residual energy-based model (R-EBM) is proposed to complement the auto-regressive ASR model to close the gap between the two distributions. Meanwhile, R-EBMs can also be regarded as utterance-level confidence estimators, which may benefit many downstream tasks. Experiments on a 100hr LibriSpeech dataset show that R-EBMs can reduce the word error rates (WERs) by 8.2%/6.7% while improving areas under precision-recall curves of confidence scores by 12.6%/28.4% on test-clean/test-other sets. Furthermore, on a state-of-the-art model using self-supervised learning (wav2vec 2.0), R-EBMs still significantly improves both the WER and confidence estimation performance.
In this paper, we explore several new schemes to train a seq2seq model to integrate a pre-trained LM. Our proposed fusion methods focus on the memory cell state and the hidden state in the seq2seq decoder long short-term memory (LSTM), and the memory cell state is updated by the LM unlike the prior studies. This means the memory retained by the main seq2seq would be adjusted by the external LM. These fusion methods have several variants depending on the architecture of this memory cell update and the use of memory cell and hidden states which directly affects the final label inference. We performed the experiments to show the effectiveness of the proposed methods in a mono-lingual ASR setup on the Librispeech corpus and in a transfer learning setup from a multilingual ASR (MLASR) base model to a low-resourced language. In Librispeech, our best model improved WER by 3.7%, 2.4% for test clean, test other relatively to the shallow fusion baseline, with multi-level decoding. In transfer learning from an MLASR base model to the IARPA Babel Swahili model, the best scheme improved the transferred model on eval set by 9.9%, 9.8% in CER, WER relatively to the 2-stage transfer baseline.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا