No Arabic abstract
Networks inside current data centers comprise a hierarchy of power-hungry electronic packet switches interconnected via optical fibers and transceivers. As the scaling of such electrically-switched networks approaches a plateau, a power-efficient solution is to implement a flat network with optical circuit switching (OCS), without electronic switches and a reduced number of transceivers due to direct links among servers. One of the promising ways of implementing OCS is by using tunable lasers and arrayed waveguide grating routers. Such an OCS-network can offer high bandwidth and low network latency, and the possibility of photonic integration results in an energy-efficient, compact, and scalable photonic data center network. To support dynamic data center workloads efficiently, it is critical to switch between wavelengths in sub nanoseconds (ns). Here we demonstrate ultrafast photonic circuit switching based on a microcomb. Using a photonic integrated Si3N4 microcomb in conjunction with semiconductor optical amplifiers (SOAs), sub ns (< 500 ps) switching of more than 20 carriers is achieved. Moreover, the 25-Gbps non-return to zero (NRZ) and 50-Gbps four-level pulse amplitude modulation (PAM-4) burst mode transmission systems are shown. Further, on-chip Indium phosphide (InP) based SOAs and arrayed waveguide grating (AWG) are used to show sub-ns switching along with 25-Gbps NRZ burst mode transmission providing a path toward a more scalable and energy-efficient wavelength-switched network for future data centers.
High-speed laser frequency actuation is critical in all applications employing lasers and frequency combs, and is prerequisite for phase locking, frequency stabilization and stability transfer among multiple optical carriers. Soliton microcombs have emerged as chip-scale, broadband and low-power-consumption frequency comb sources.Yet, integrated microcombs relying on thermal heaters for on-chip actuation all exhibit only kilohertz actuation bandwidth. Consequently, high-speed actuation and locking of microcombs have been attained only with off-chip bulk modulators. Here, we present high-speed microcomb actuation using integrated components. By monolithically integrating piezoelectric AlN actuators on ultralow-loss Si3N4 photonic circuits, we demonstrate voltage-controlled soliton tuning, modulation and stabilization. The integrated AlN actuators feature bi-directional tuning with high linearity and low hysteresis, operate with 300 nW power and exhibit flat actuation response up to megahertz frequency, significantly exceeding bulk piezo tuning bandwidth. We use this novel capability to demonstrate a microcomb engine for parallel FMCW LiDAR, via synchronously tuning the laser and microresonator. By applying a triangular sweep at the modulation rate matching the frequency spacing of HBAR modes, we exploit the resonant build-up of bulk acoustic energy to significantly lower the required driving to a CMOS voltage of only 7 Volts. Our approach endows soliton microcombs with integrated, ultralow-power-consumption, and fast actuation, significantly expanding the repertoire of technological applications.
We propose and investigate the performance of integrated photonic isolators based on non-reciprocal mode conversion facilitated by unidirectional, traveling acoustic waves. A triply-guided waveguide system on-chip, comprising two optical modes and an electrically-driven acoustic mode, facilitates the non-reciprocal mode conversion and is combined with modal filters to create the isolator. The co-guided and co-traveling arrangement enables isolation with no additional optical loss, without magnetic-optic materials, and low power consumption. The approach is theoretically evaluated and simulations predict over 20 dB of isolation and 2.6 dB of insertion loss with 370 GHz optical bandwidth and a 1 cm device length. The isolator utilizes only 1 mW of electrical drive power, an improvement of 1-3 orders of magnitude over the state-of-the-art. The electronic driving and lack of magneto-optic materials suggest the potential for straightforward integration with the drive circuitry, possibly in monolithic CMOS technology, enabling a fully contained `black box optical isolator with two optical ports and DC electrical power.
A photonic integrated circuit (PIC) comprised of an 11 cm multimode speckle waveguide, a 1x32 splitter, and a linear grating coupler array is fabricated and utilized to receive 2 GHz of radio-frequency (RF) signal bandwidth from 2.5 to 4.5 GHz using compressive sensing (CS). Incoming RF signals are modulated onto chirped optical pulses which are input to the multimode waveguide. The multimode waveguide produces the random projections needed for CS via optical speckle. The time-varying phase and amplitude of two test RF signals between 2.5 and 4.5 GHz are successfully recovered using the standard penalized $l_1$-norm method. The use of a passive PIC serves as an initial step towards the miniaturization of a compressive sensing RF receiver.
While soliton microcombs offer the potential for integration of powerful frequency metrology and precision spectroscopy systems, their operation requires complex startup and feedback protocols that necessitate difficult-to-integrate optical and electrical components. Moreover, CMOS-rate microcombs, required in nearly all comb systems, have resisted integration because of their power requirements. Here, a regime for turnkey operation of soliton microcombs co-integrated with a pump laser is demonstrated and theoretically explained. Significantly, a new operating point is shown to appear from which solitons are generated through binary turn-on and turn-off of the pump laser, thereby eliminating all photonic/electronic control circuitry. These features are combined with high-Q $Si_3N_4$ resonators to fully integrate into a butterfly package microcombs with CMOS frequencies as low as 15 GHz, offering compelling advantages for high-volume production.
Microwave photonics (MWP) studies the interaction between microwave and optical waves for the generation, transmission and processing of microwave signals (i.e., three key domains), taking advantages of broad bandwidth and low loss offered by modern photonics. Integrated MWP using photonic integrated circuits (PICs) can reach a compact, reliable and green implementation. Most PICs, however, are recently developed to perform one or more functions restricted inside a single domain. In this paper, as highly desired, a multifunctional PIC is proposed to cover the three key domains. The PIC is fabricated on InP platform by monolithically integrating four laser diodes and two modulators. Using the multifunctional PIC, seven fundamental functions across microwave signal generation, transmission and processing are demonstrated experimentally. Outdoor field trials for electromagnetic environment surveillance along an in-service high-speed railway are also performed. The success to such a PIC marks a key step forward for practical and massive MWP implementations.