Do you want to publish a course? Click here

Orbit topology analysed from $pi$ phase shift of magnetic quantum oscillations in three-dimensional Dirac semimetal

88   0   0.0 ( 0 )
 Added by Sang-Eon Lee
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

With the emergence of Dirac fermion physics in the field of condensed matter, magnetic quantum oscillations (MQOs) have been used to discern the topology of orbits in Dirac materials. However, many previous researchers have relied on the single-orbit Lifshiftz-Kosevich formula, which overlooks the significant effect of degenerate orbits on MQOs. Since the single-orbit LK formula is valid for massless Dirac semimetals with small cyclotron masses, it is imperative to generalize the method applicable to a wide range of Dirac semimetals, whether massless or massive. This report demonstrates how spin-degenerate orbits affect the phases in MQOs of three-dimensional massive Dirac semimetal, NbSb$_2$. With varying the direction of the magnetic field, an abrupt $pi$ phase shift is observed due to the interference between the spin-degenerate orbits. We investigate the effect of cyclotron mass on the $pi$ phase shift and verify its close relation to the phase from the Zeeman coupling. We find that the $pi$ phase shift occurs when the cyclotron mass is 1/2 of the electron mass, indicating the effective spin gyromagnetic ratio is $g_s$ = 2. Our approach is not only useful for analysing MQOs of massless Dirac semimetals with a small cyclotron mass, but also can be used for MQOs in massive Dirac materials with degenerate orbits, especially in topological materials with a sufficiently large cyclotron mass. Furthermore, this method provides a useful way to estimate the precise $g_s$ value of the material.



rate research

Read More

78 - F. Orbanic , M. Novak , Z. Glumac 2021
We report a study of quantum oscillations (QO) in the magnetic torque of the nodal-line Dirac semimetal ZrSiS in the magnetic fields up to 35 T and the temperature range from 40 K down to 2 K, enabling high resolution mapping of the Fermi surface (FS) topology in the $k_z=pi$ (Z-R-A) plane of the first Brillouin zone (FBZ). It is found that the oscillatory part of the measured magnetic torque signal consists of low frequency (LF) contributions (frequencies up to 1000 T) and high frequency (HF) contributions (several clusters of frequencies from 7-22 kT). Increased resolution and angle-resolved measurements allow us to show that the high oscillation frequencies originate from magnetic breakdown (MB) orbits involving clusters of individual $alpha$ hole and $beta$ electron pockets from the diamond shaped FS in the Z-R-A plane. Analyzing the HF oscillations we have unequivocally shown that the QO frequency from the dog-bone shaped Fermi pocket ($beta$ pocket) amounts $beta=591(15)$ T. Our findings suggest that most of the frequencies in the LF part of QO can also be explained by MB orbits when intraband tunneling in the dog-bone shaped $beta$ electron pocket is taken into account. Our results give a new understanding of the novel properties of the FS of the nodal-line Dirac semimetal ZrSiS and sister compounds.
We report the observation of Shubnikov-de Haas oscillations in bulk single crystals of monoclinic SrIrO$_3$ in magnetic fields up to 35 T. Analysis of the oscillations reveals a Fermi surface comprising multiple small pockets with effective masses up to five times larger than the calculated band mass. Phase analysis of the oscillations indicates non-trivial topological character of the dominant orbit while ab-initio calculations reveal robust linear band-crossings at the Brillouin zone boundary. These collective findings, coupled with knowledge of the evolution of the electronic state across the Ruddlesden-Popper iridate series, establishes monoclinic SrIrO$_3$ as a topological semimetal on the boundary of the Mott metal-insulator transition.
The three dimensional (3D) topological insulators are predicted to exhibit a 3D Dirac semimetal state in critical regime of topological to trivial phase transition. Here we demonstrate the first experimental evidence of 3D Dirac semimetal state in topological insulator Bi2Se3 with bulk carrier concentration of ~ 10^19 cm^{-3}, using magneto-transport measurements. At low temperatures, the resistivity of our Bi2Se3 crystal exhibits clear Shubnikov-de Haas (SdH) oscillations above 6T. The analysis of these oscillations through Lifshitz-Onsanger and Lifshitz-Kosevich theory reveals a non-trivial pi Berry phase coming from 3D bands, which is a decisive signature of 3D Dirac semimetal state. The large value of Dingle temperature and natural selenium vacancies in our crystal suggest that the observed 3D Dirac semimetal state is an outcome of enhanced strain field and weaker effective spin-orbit coupling.
Black phosphorus (BP), a layered van der Waals material, reportedly has a band gap sensitive to external perturbations and manifests a Dirac-semimetal phase when its band gap is closed. Previous studies were focused on effects of each perturbation, lacking a unified picture for the band-gap closing and the Dirac-semimetal phase. Here, using pseudospins from the glide-reflection symmetry, we study the electronic structures of mono- and bilayer BP and construct the phase diagram of the Dirac-semimetal phase in the parameter space related to pressure, strain, and electric field. We find that the Dirac-semimetal phase in BP layers is singly connected in the phase diagram, indicating the phase is topologically identical regardless of the gap-closing mechanism. Our findings can be generalized to the Dirac semimetal phase in anisotropic layered materials and can play a guiding role in search for a new class of topological materials and devices.
133 - Wei Lu , Shaofeng Ge , Xuefeng Liu 2016
Three dimensional (3D) Dirac semimetals which can be seen as 3D analogues of graphene have attracted enormous interests in research recently. In order to apply these ultrahigh-mobility materials in future electronic/optoelectronic devices, it is crucial to understand the relaxation dynamics of photoexcited carriers and their coupling with lattice. In this work, we report ultrafast transient reflection measurements of the photoexcited carrier dynamics in cadmium arsenide (Cd3As2), which is one of the most stable Dirac semimetals that have been confirmed experimentally. By using low energy probe photon of 0.3 eV, we probed the dynamics of the photoexcited carriers that are Dirac-Fermi-like approaching the Dirac point. We systematically studied the transient reflection on bulk and nanoplate samples that have different doping intensities by tuning the probe wavelength, pump power and lattice temperature, and find that the dynamical evolution of carrier distributions can be retrieved qualitatively by using a two-temperature model. This result is very similar to that of graphene, but the carrier cooling through the optical phonon couplings is slower and lasts over larger electron temperature range because the optical phonon energies in Cd3As2 are much lower than those in graphene.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا