Do you want to publish a course? Click here

Continuous-variable graph states for quantum metrology

244   0   0.0 ( 0 )
 Added by Kejie Fang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Graph states are a unique resource for quantum information processing, such as measurement-based quantum computation. Here, we theoretically investigate using continuous-variable graph states for single-parameter quantum metrology, including both phase and displacement sensing. We identified the optimal graph states for the two sensing modalities and showed that Heisenberg scaling of the accuracy for both phase and displacement sensing can be achieved with local homodyne measurements.



rate research

Read More

In this paper we study the protocol implementation and property analysis for several practical quantum secret sharing (QSS) schemes with continuous variable graph state (CVGS). For each QSS scheme, an implementation protocol is designed according to its secret and communication channel types. The estimation error is derived explicitly, which facilitates the unbiased estimation and error variance minimization. It turns out that only under infinite squeezing can the secret be perfectly reconstructed. Furthermore, we derive the condition for QSS threshold protocol on a weighted CVGS. Under certain conditions, the perfect reconstruction of the secret for two non-cooperative groups is exclusive, i.e. if one group gets the secret perfectly, the other group cannot get any information about the secret.
We describe a generalization of the cluster-state model of quantum computation to continuous-variable systems, along with a proposal for an optical implementation using squeezed-light sources, linear optics, and homodyne detection. For universal quantum computation, a nonlinear element is required. This can be satisfied by adding to the toolbox any single-mode non-Gaussian measurement, while the initial cluster state itself remains Gaussian. Homodyne detection alone suffices to perform an arbitrary multi-mode Gaussian transformation via the cluster state. We also propose an experiment to demonstrate cluster-based error reduction when implementing Gaussian operations.
We demonstrate that the optimal states in lossy quantum interferometry may be efficiently simulated using low rank matrix product states. We argue that this should be expected in all realistic quantum metrological protocols with uncorrelated noise and is related to the elusive nature of the Heisenberg precision scaling in presence of decoherence.
We initiate the study of neural-network quantum state algorithms for analyzing continuous-variable lattice quantum systems in first quantization. A simple family of continuous-variable trial wavefunctons is introduced which naturally generalizes the restricted Boltzmann machine (RBM) wavefunction introduced for analyzing quantum spin systems. By virtue of its simplicity, the same variational Monte Carlo training algorithms that have been developed for ground state determination and time evolution of spin systems have natural analogues in the continuum. We offer a proof of principle demonstration in the context of ground state determination of a stoquastic quantum rotor Hamiltonian. Results are compared against those obtained from partial differential equation (PDE) based scalable eigensolvers. This study serves as a benchmark against which future investigation of continuous-variable neural quantum states can be compared, and points to the need to consider deep network architectures and more sophisticated training algorithms.
We study how useful random states are for quantum metrology, i.e., surpass the classical limits imposed on precision in the canonical phase estimation scenario. First, we prove that random pure states drawn from the Hilbert space of distinguishable particles typically do not lead to super-classical scaling of precision even when allowing for local unitary optimization. Conversely, we show that random states from the symmetric subspace typically achieve the optimal Heisenberg scaling without the need for local unitary optimization. Surprisingly, the Heisenberg scaling is observed for states of arbitrarily low purity and preserved under finite particle losses. Moreover, we prove that for such states a standard photon-counting interferometric measurement suffices to typically achieve the Heisenberg scaling of precision for all possible values of the phase at the same time. Finally, we demonstrate that metrologically useful states can be prepared with short random optical circuits generated from three types of beam-splitters and a non-linear (Kerr-like) transformation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا