Do you want to publish a course? Click here

Quantum tomography of an entangled three-spin state in silicon

71   0   0.0 ( 0 )
 Added by Kenta Takeda
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum entanglement is a fundamental property of coherent quantum states and an essential resource for quantum computing. While two-qubit entanglement has been demonstrated for spins in silicon, creation of multipartite entanglement, a first step toward implementing quantum error correction, has remained challenging due to the difficulties in controlling a multi-qubit array, such as device disorder, magnetic and electrical noises and exacting exchange controls. Here, we show operation of a fully functional three-qubit array in silicon and generation of a three-qubit Greenberger-Horne-Zeilinger (GHZ) state. We obtain a state fidelity of 88.0 percent by quantum state tomography, which witnesses a genuine GHZ-class quantum entanglement that is not biseparable. Our result shows the potential of silicon-based qubit platform for demonstrations of multiqubit quantum algorithms.



rate research

Read More

We report initialization, complete electrical control, and single-shot readout of an exchange-only spin qubit. Full control via the exchange interaction is fast, yielding a demonstrated 75 qubit rotations in under 2 ns. Measurement and state tomography are performed using a maximum-likelihood estimator method, allowing decoherence, leakage out of the qubit state space, and measurement fidelity to be quantified. The methods developed here are generally applicable to systems with state leakage, noisy measurements, and non-orthogonal control axes.
103 - Yue Ban , Xi Chen , Sigmund Kohler 2019
Long-distance transfer of quantum states is an indispensable part of large-scale quantum information processing. We propose a novel scheme for the transfer of two-electron entangled states, from one edge of a quantum dot array to the other by coherent adiabatic passage. This protocol is mediated by pulsed tunneling barriers. In a second step, we seek for a speed up by shortcut to adiabaticity techniques. This significantly reduces the operation time and, thus, minimizes the impact of decoherence. For typical parameters of state-of-the-art solid state devices, the accelerated protocol has an operation time in the nanosecond range and terminates before a major coherence loss sets in. The scheme represents a promising candidate for entanglement transfer in solid state quantum information processing.
The size of silicon transistors used in microelectronic devices is shrinking to the level where quantum effects become important. While this presents a significant challenge for the further scaling of microprocessors, it provides the potential for radical innovations in the form of spin-based quantum computers and spintronic devices. An electron spin in Si can represent a well-isolated quantum bit with long coherence times because of the weak spin-orbit coupling and the possibility to eliminate nuclear spins from the bulk crystal. However, the control of single electrons in Si has proved challenging, and has so far hindered the observation and manipulation of a single spin. Here we report the first demonstration of single-shot, time-resolved readout of an electron spin in Si. This has been performed in a device consisting of implanted phosphorus donors coupled to a metal-oxide-semiconductor single-electron transistor - compatible with current microelectronic technology. We observed a spin lifetime approaching 1 second at magnetic fields below 2 T, and achieved spin readout fidelity better than 90%. High-fidelity single-shot spin readout in Si opens the path to the development of a new generation of quantum computing and spintronic devices, built using the most important material in the semiconductor industry.
Working in the effective-mass approximation, we apply a powerful convergent perturbative technique of Turbiners to the calculation of the ground state energy and the wave function of an exciton confined to a three-dimensional parabolic quantum dot. Unlike the usual Rayleigh-Schrodinger perturbation theory, Turbiners approach works well even in the regime of strong coupling and does not require the knowledge of the full solution to the undisturbed problem. The second-order convergent calculation presented below is in excellent agreement with the results of exact numerical simulations for a wide range of systems confinement parameters.
The presence of valley states is a significant obstacle to realizing quantum information technologies in Silicon quantum dots, as leakage into alternate valley states can introduce errors into the computation. We use a perturbative analytical approach to study the dynamics of exchange-coupled quantum dots with valley degrees of freedom. We show that if the valley splitting is large and electrons are not properly initialized to valley eigenstates, then time evolution of the system will lead to spin-valley entanglement. Spin-valley entanglement will also occur if the valley splitting is small and electrons are not initialized to the same valley state. Additionally, we show that for small valley splitting, spin-valley entanglement does not affect measurement probabilities of two-qubit systems; however, systems with more qubits will be affected. This means that two-qubit gate fidelities measured in two-qubit systems may miss the effects of valley degrees of freedom. Our work shows how the existence of valleys may adversely affect multiqubit fidelities even when the system temperature is very low.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا