No Arabic abstract
Working in the effective-mass approximation, we apply a powerful convergent perturbative technique of Turbiners to the calculation of the ground state energy and the wave function of an exciton confined to a three-dimensional parabolic quantum dot. Unlike the usual Rayleigh-Schrodinger perturbation theory, Turbiners approach works well even in the regime of strong coupling and does not require the knowledge of the full solution to the undisturbed problem. The second-order convergent calculation presented below is in excellent agreement with the results of exact numerical simulations for a wide range of systems confinement parameters.
We show theoretically and experimentally the existence of a new quantum interference(QI) effect between the electron-hole interactions and the scattering by a single Mn impurity. Theoretical model, including electron-valence hole correlations, the short and long range exchange interaction of Mn ion with the heavy hole and with electron and anisotropy of the quantum dot, is compared with photoluminescence spectroscopy of CdTe dots with single magnetic ions. We show how design of the electronic levels of a quantum dot enable the design of an exciton, control of the quantum interference and hence engineering of light-Mn interaction.
Quantum dots (QDs) can act as convenient hosts of two-level quantum szstems, such as single electron spins, hole spins or excitons (bound electron-hole pairs). Due to quantum confinement, the ground state of a single hole confined in a QD usually has dominant heavy-hole (HH) character. For this reason light-hole (LH) states have been largely neglected, despite the fact that may enable the realilzation of coherent photon-to-spin converters or allow for faster spin manipulation compared to HH states. In this work, we use tensile strains larger than 0.3% to switch the ground state of excitons confined in high quality GaAs/AlGaAs QDs from the conventional HH- to LH-type. The LH-exciton fine structure is characterized by two in-plane-polarized lines and, ~400 micro-eV above them, by an additional line with pronounced out-of-plane oscillator strength, consistent with theoretical predictions based on atomistic empirical pseudopotential calculations and a simple mesoscopic model.
Quantum entanglement is a fundamental property of coherent quantum states and an essential resource for quantum computing. While two-qubit entanglement has been demonstrated for spins in silicon, creation of multipartite entanglement, a first step toward implementing quantum error correction, has remained challenging due to the difficulties in controlling a multi-qubit array, such as device disorder, magnetic and electrical noises and exacting exchange controls. Here, we show operation of a fully functional three-qubit array in silicon and generation of a three-qubit Greenberger-Horne-Zeilinger (GHZ) state. We obtain a state fidelity of 88.0 percent by quantum state tomography, which witnesses a genuine GHZ-class quantum entanglement that is not biseparable. Our result shows the potential of silicon-based qubit platform for demonstrations of multiqubit quantum algorithms.
In this work we demonstrate theoretically how to use external laser field to control the population inversion of a single quantum dot exciton qubit in a nanocavity. We consider the Jaynes-Cummings model to describe the system, and the incoherent losses were take into account by using Lindblad operators. We have demonstrated how to prepare the initial state in a superposition of the exciton in the ground state and the cavity in a coherent state. The effects of exciton-cavity detuning, the laser-cavity detunings, the pulse area and losses over the qubit dynamics are analyzed. We also show how to use a continuous laser pumping in resonance with the cavity mode to sustain a coherent state inside the cavity, providing some protection to the qubit against cavity loss.
Spin qubits involving individual spins in single quantum dots or coupled spins in double quantum dots have emerged as potential building blocks for quantum information processing applications. It has been suggested that triple quantum dots may provide additional tools and functionalities. These include the encoding of information to either obtain protection from decoherence or to permit all-electrical operation, efficient spin busing across a quantum circuit, and to enable quantum error correction utilizing the three-spin Greenberger-Horn-Zeilinger quantum state. Towards these goals we demonstrate for the first time coherent manipulation between two interacting three-spin states. We employ the Landau-Zener-Stuckelberg approach for creating and manipulating coherent superpositions of quantum states. We confirm that we are able to maintain coherence when decreasing the exchange coupling of one spin with another while simultaneously increasing its coupling with the third. Such control of pairwise exchange is a requirement of most spin qubit architectures but has not been previously demonstrated.