Do you want to publish a course? Click here

Total reaction cross section on a deuteron target and the eclipse effect of the constituent neutron and proton

67   0   0.0 ( 0 )
 Added by Wataru Horiuchi
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Background: Eclipse effect of the neutron and proton in a deuteron target is essential to correctly describe high-energy deuteron scattering. The nucleus-deuteron scattering needs information not only on the nucleus-proton but also the nucleus-neutron interaction, for which no direct measurement of the nucleus-neutron cross sections is available for unstable nuclei. Purpose: We systematically evaluated the total reaction cross sections by a deuteron target to explore the feasibility of extracting the nucleus-neutron interaction from measurable cross sections. Methods: High-energy nucleus-deuteron collision is described by the Glauber model, in which the proton and neutron configuration of the deuteron is explicitly taken into account. Results: Our calculation reproduces available experimental total reaction cross section data on the nucleus-deuteron scattering. The possibility of extracting the nucleus-neutron total reaction cross section from nucleus-deuteron and nucleus-proton total reaction cross sections is explored. The total reaction cross sections of a nucleus by proton, neutron, and deuteron targets can be expressed, to good accuracy, in terms of the nuclear matter radius and neutron skin thickness. Incident-energy dependence of the total reaction cross sections is examined. Conclusions: The total reaction cross section on a deuteron target includes information on both the nucleus-neutron and nucleus-proton profile functions. Measuring the cross sections by deuteron and proton targets is a promising tool to extract the nuclear size properties.



rate research

Read More

An improved procedure is suggested for finding the total photoabsorption cross section on the neutron from data on the deuteron at energies < 1.5 GeV. It includes unfolding of smearing effects caused by Fermi motion of nucleons in the deuteron and also takes into account non-additive contributions to the deuteron cross section due to final-state interactions of particles in single and double pion photoproduction. This procedure is applied to analysis of existing data.
The reaction cross section $sigma_R$ is useful to determine the neutron radius $R_n$ as well as the matter radius $R_m$. The chiral (Kyushu) $g$-matrix folding model for $^{12}$C scattering on $^{9}$Be, $^{12}$C, $^{27}$Al targets was tested in the incident energy range of $30 lsim E_{rm in} lsim 400 $ MeV, and it is found that the model reliably reproduces the $sigma_R$ in $30 lsim E_{rm in} lsim 100 $ MeV and $250 lsim E_{rm in} lsim 400$ MeV. item[Aim] We determine $R_n$ and the neutron skin thickness $R_{rm skin}$ of ${}^{208}{rm Pb}$ by using high-quality $sigma_R$ data for the $p+{}^{208}{rm Pb}$ scattering in $30 leq E_{rm in} leq 100$ MeV. The theoretical model is the Kyushu $g$-matrix folding model with the densities calculated with Gongny-D1S HFB (GHFB) with the angular momentum projection (AMP). item[Results] The Kyushu $g$-matrix folding model with the GHFB+AMP densities underestimates $sigma_{rm R}$ in $30 leq E_{rm in} leq 100$~MeV only by a factor of 0.97. Since the proton radius $R_p$ calculated with GHFB+AMP agrees with the precise experimental data of 5.444 fm, the small deviation of the theoretical result from the data on $sigma_R$ allows us to scale the GHFB+AMP neutron density so as to reproduce the $sigma_R$ data. In $E_{rm in}$ = 30--100 MeV, the experimental $sigma_R$ data can be reproduced by assuming the neutron radius of ${}^{208}{rm Pb}$ as $R_n$ = $5.722 pm 0.035$ fm. item[Conclusion] The present result $R_{rm skin}$ = $0.278 pm 0.035$ fm is in good agreement with the recent PREX-II result of $r_{rm skin}$ = $0.283pm 0.071$ fm.
{bf Background:} Using the chiral (Kyushu) $g$-matrix folding model with the densities calculated with GHFB+AMP, we determined $r_{rm skin}^{208}=0.25$fm from the central values of $sigma_{rm R}$ of p+$^{208}$Pb scattering in $E_{rm in}=40-81$MeV. The high-resolution $E1$ polarizability experiment ($E1$pE) yields $r_{rm skin}^{48}(E1{rm pE}) =0.14-0.20$fm. The data on $sigma_{rm R}$ are available as a function of $E_{rm in}$ for $p$+$^{48}$Ca scattering. {bf Aim:} Our aim is to determine $r_{rm skin}^{48}$ from the central values of $sigma_{rm R}$ for $p$+$^{48}$Ca scattering by using the folding model. {bf Results:} As for $^{48}$Ca, we determine $r_n(E1{rm pE})=3.56$fm from the central value 0.17fm of $r_{rm skin}^{48}(E1{rm pE})$ and $r_p({rm EXP})=3.385$fm of electron scattering, and evaluate $r_m(E1{rm pE})=3.485$fm from the $r_n(E1{rm pE})$ and the $r_p({rm EXP})$ of electron scattering. The folding model with GHFB+AMP densities reproduces $sigma_{rm R}$ in $23 leq E_{rm in} leq 25.3$ MeV in one-$sigma$ level, but slightly overestimates the central values of $sigma_{rm R}$ there. In $23 leq E_{rm in} leq 25.3$MeV, the small deviation allows us to scale the GHFB+AMP densities to the central values of $r_p({rm EXP})$ and $r_n(E1{rm pE})$. The $sigma_{rm R}(E1{rm pE})$ obtained with the scaled densities almost reproduce the central values of $sigma_{rm R}$ when $E_{rm in}=23-25.3$MeV, so that the $sigma_{rm R}({rm GHFB+AMP})$ and the $sigma_{rm R}(E1{rm pE})$ are in 1-$sigma$ of $sigma_{rm R}$ there. In $E_{rm in}=23-25.3$MeV, we determine the $r_{m}({rm EXP})$ from the central values of $sigma_{rm R}$ and take the average for the $r_{m}({rm EXP})$. The averaged value is $r_{m}({rm EXP})=3.471$fm. Eventually, we obtain $r_{rm skin}^{48}({rm EXP})=0.146$fm from $r_{m}({rm EXP})=3.471$fm and $r_p({rm EXP})=3.385$fm.
Background: Using the chiral (Kyushu) $g$-matrix folding model with the densities calculated with Gogny-HFB (GHFB) with the angular momentum projection (AMP), we determined the central values of matter radius and neutron skin from the central values of reaction cross sections $sigma_{rm R}({rm EXP})$ of p+$^{40,48}$Ca and p+$^{208}$Pb scattering. As for p+$^{58}$Ni scattering, $sigma_{rm R}({rm EXP})$ are available as a function of incident energy $E_{rm in}$. Aim: Our aim is to determine matter radius $r_{m}$ and skin $r_{rm skin}$ for $^{58}$Ni from the $sigma_{rm R}({rm EXP})$ of p+$^{58}$Ni scattering by using the Kyushu $g$-matrix folding model with the GHFB+AMP densities. Results: For p+$^{58}$Ni scattering, the Kyushu $g$-matrix folding model with the GHFB+AMP densities reproduces $sigma_{rm R}({rm EXP})$ in $8.8 leq E_{rm in} leq 81$MeV. For $E_{rm in}=81$MeV, we define the factor $F$ as $F=sigma_{rm R}({rm EXP})/sigma_{rm R}({rm AMP})=0.9775$. The $Fsigma_{rm R}({rm AMP})$ be much the same as the center values of $sigma_{rm R}({rm EXP})$ in $8.8 leq E_{rm in} leq 81$MeV. We then determine $r_{rm m}({rm EXP})$ from the center values of $sigma_{rm R}({rm EXP})$, using $sigma_{rm R}({rm EXP})=C r_{m}^{2}({rm EXP})$ with $C=r_{m}^{2}({rm AMP})/ (Fsigma_{rm R}({rm AMP}))$. The $r_{m}({rm EXP})$ thus obtained are averaged over $E_{rm in}$. The averaged value is $r_{m}({rm EXP})=3.697$fm. Eventually, we obtain $r_{rm skin}({rm EXP})=0.023$fm from $r_{rm m}=3.697$fm and $r_p({rm EXP})=3.685$fm of electron scattering.
The elastic scattering of the radioactive halo nucleus 6He on 27Al target was measured at four energies close to the Coulomb barrier using the RIBRAS (Radioactive Ion Beams in Brazil) facility. The Sao Paulo Potential(SPP) was used and its diffuseness and imaginary strength were adjusted to fit the elastic scattering angular distributions. Reaction cross-sections were extracted from the optical model fits. The reduced reaction cross-sections of 6He on 27Al are similar to those for stable, weakly bound projectiles as {6,7}Li, 9Be and larger than stable, tightly bound projectile as 16O on 27Al.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا