No Arabic abstract
Vectorization and GPUs will profoundly change graph processing. Traditional graph algorithms tuned for 32- or 64-bit based memory accesses will be inefficient on architectures with 512-bit wide (or larger) instruction units that are already present in the Intel Knights Landing (KNL) manycore CPU. Anticipating this shift, we propose SlimSell: a vectorizable graph representation to accelerate Breadth-First Search (BFS) based on sparse-matrix dense-vector (SpMV) products. SlimSell extends and combines the state-of-the-art SIMD-friendly Sell-C-sigma matrix storage format with tropical, real, boolean, and sel-max semiring operations. The resulting design reduces the necessary storage (by up to 50%) and thus pressure on the memory subsystem. We augment SlimSell with the SlimWork and SlimChunk schemes that reduce the amount of work and improve load balance, further accelerating BFS. We evaluate all the schemes on Intel Haswell multicore CPUs, the state-of-the-art Intel Xeon Phi KNL manycore CPUs, and NVIDIA Tesla GPUs. Our experiments indicate which semiring offers highest speedups for BFS and illustrate that SlimSell accelerates a tuned Graph500 BFS code by up to 33%. This work shows that vectorization can secure high-performance in BFS based on SpMV products; the proposed principles and designs can be extended to other graph algorithms.
For parallel breadth first search (BFS) algorithm on large-scale distributed memory systems, communication often costs significantly more than arithmetic and limits the scalability of the algorithm. In this paper we sufficiently reduce the communication cost in distributed BFS by compressing and sieving the messages. First, we leverage a bitmap compression algorithm to reduce the size of messages before communication. Second, we propose a novel distributed directory algorithm, cross directory, to sieve the redundant data in messages. Experiments on a 6,144-core SMP cluster show our algorithm outperforms the baseline implementation in Graph500 by 2.2 times, reduces its communication time by 79.0%, and achieves a performance rate of 12.1 GTEPS (billion edge visits per second)
Analyzing massive complex networks yields promising insights about our everyday lives. Building scalable algorithms to do so is a challenging task that requires a careful analysis and an extensive evaluation. However, engineering such algorithms is often hindered by the scarcity of publicly~available~datasets. Network generators serve as a tool to alleviate this problem by providing synthetic instances with controllable parameters. However, many network generators fail to provide instances on a massive scale due to their sequential nature or resource constraints. Additionally, truly scalable network generators are few and often limited in their realism. In this work, we present novel generators for a variety of network models that are frequently used as benchmarks. By making use of pseudorandomization and divide-and-conquer schemes, our generators follow a communication-free paradigm. The resulting generators are thus embarrassingly parallel and have a near optimal scaling behavior. This allows us to generate instances of up to $2^{43}$ vertices and $2^{47}$ edges in less than 22 minutes on 32768 cores. Therefore, our generators allow new graph families to be used on an unprecedented scale.
We study fundamental graph problems such as graph connectivity, minimum spanning forest (MSF), and approximate maximum (weight) matching in a distributed setting. In particular, we focus on the Adaptive Massively Parallel Computation (AMPC) model, which is a theoretical model that captures MapReduce-like computation augmented with a distributed hash table. We show the first AMPC algorithms for all of the studied problems that run in a constant number of rounds and use only $O(n^epsilon)$ space per machine, where $0 < epsilon < 1$. Our results improve both upon the previous results in the AMPC model, as well as the best-known results in the MPC model, which is the theoretical model underpinning many popular distributed computation frameworks, such as MapReduce, Hadoop, Beam, Pregel and Giraph. Finally, we provide an empirical comparison of the algorithms in the MPC and AMPC models in a fault-tolerant distriubted computation environment. We empirically evaluate our algorithms on a set of large real-world graphs and show that our AMPC algorithms can achieve improvements in both running time and round-complexity over optimized MPC baselines.
While algebrisation constitutes a powerful technique in the design and analysis of centralised algorithms, to date there have been hardly any applications of algebraic techniques in the context of distributed graph algorithms. This work is a case study that demonstrates the potential of algebrisation in the distributed context. We will focus on distributed graph algorithms in the congested clique model; the graph problems that we will consider include, e.g., the triangle detection problem and the all-pairs shortest path problem (APSP). There is plenty of prior work on combinatorial algorithms in the congested clique model: for example, Dolev et al. (DISC 2012) gave an algorithm for triangle detection with a running time of $tilde O(n^{1/3})$, and Nanongkai (STOC 2014) gave an approximation algorithm for APSP with a running time of $tilde O(n^{1/2})$. In this work, we will use algebraic techniques -- in particular, algorithms based on fast matrix multiplication -- to solve both triangle detection and the unweighted APSP in time $O(n^{0.15715})$; for weighted APSP, we give a $(1+o(1))$-approximation with this running time, as well as an exact $tilde O(n^{1/3})$ solution.
We reduce the cost of communication and synchronization in graph processing by analyzing the fastest way to process graphs: pushing the updates to a shared state or pulling the updates to a private state.We investigate the applicability of this push-pull dichotomy to various algorithms and its impact on complexity, performance, and the amount of used locks, atomics, and reads/writes. We consider 11 graph algorithms, 3 programming models, 2 graph abstractions, and various families of graphs. The conducted analysis illustrates surprising differences between push and pull variants of different algorithms in performance, speed of convergence, and code complexity; the insights are backed up by performance data from hardware counters.We use these findings to illustrate which variant is faster for each algorithm and to develop generic strategies that enable even higher speedups. Our insights can be used to accelerate graph processing engines or libraries on both massively-parallel shared-memory machines as well as distributed-memory systems.