Do you want to publish a course? Click here

Singularities of thermal correlators at strong coupling

174   0   0.0 ( 0 )
 Added by Hirosi Ooguri
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We analyze the singularities of the two-point function in a conformal field theory at finite temperature. In a free theory, the only singularity is along the boundary light cone. In the holographic limit, a new class of singularities emerges since two boundary points can be connected by a nontrivial null geodesic in the bulk, encircling the photon sphere of the black hole. We show that these new singularities are resolved by tidal effects due to the black hole curvature, by solving the string worldsheet theory in the Penrose limit. Singularities in the asymptotically flat black hole geometry are also discussed.



rate research

Read More

473 - Antonio Bassetto , 2009
We continue our study of the correlators of a recently discovered family of BPS Wilson loops in N=4 supersymmetric U(N) Yang-Mills theory. We perform explicit computations at weak coupling by means of analytical and numerical methods finding agreement with the exact formula derived from localization. In particular we check the localization prediction at order g^6 for different BPS latitude configurations, the N=4 perturbative expansion reproducing the expected results within a relative error of 10^(-4). On the strong coupling side we present a supergravity evaluation of the 1/8 BPS correlator in the limit of large separation, taking into account the exchange of all relevant modes between the string world-sheets. While reproducing the correct geometrical dependence, we find that the associated coefficient does not match the localization result.
Much of the structure of cosmological correlators is controlled by their singularities, which in turn are fixed in terms of flat-space scattering amplitudes. An important challenge is to interpolate between the singular limits to determine the full correlators at arbitrary kinematics. This is particularly relevant because the singularities of correlators are not directly observable, but can only be accessed by analytic continuation. In this paper, we study rational correlators, including those of gauge fields, gravitons, and the inflaton, whose only singularities at tree level are poles and whose behavior away from these poles is strongly constrained by unitarity and locality. We describe how unitarity translates into a set of cutting rules that consistent correlators must satisfy, and explain how this can be used to bootstrap correlators given information about their singularities. We also derive recursion relations that allow the iterative construction of more complicated correlators from simpler building blocks. In flat space, all energy singularities are simple poles, so that the combination of unitarity constraints and recursion relations provides an efficient way to bootstrap the full correlators. In many cases, these flat-space correlators can then be transformed into their more complex de Sitter counterparts. As an example of this procedure, we derive the correlator associated to graviton Compton scattering in de Sitter space, though the methods are much more widely applicable.
We study 2-point correlation functions for scalar operators in position space through holography including bulk cubic couplings as well as higher curvature couplings to the square of the Weyl tensor. We focus on scalar operators with large conformal dimensions. This allows us to use the geodesic approximation for propagators. In addition to the leading order contribution, captured by geodesics anchored at the insertion points of the operators on the boundary and probing the bulk geometry thoroughly studied in the literature, the first correction is given by a Witten diagram involving both the bulk cubic coupling and the higher curvature couplings. As a result, this correction is proportional to the VEV of a neutral operator $O_k$ and thus probes the interior of the black hole exactly as in the case studied by Grinberg and Maldacena [13]. The form of the correction matches the general expectations in CFT and allows to identify the contributions of $T^nO_k$ (being $T^n$ the general contraction of n energy-momentum tensors) to the 2-point function. This correction is actually the leading term for off-diagonal correlators (i.e. correlators for operators of different conformal dimension), which can then be computed holographically in this way.
We study the spectral representation of finite temperature, out of time ordered (OTO) correlators on the multi-time-fold generalised Schwinger-Keldysh contour. We write the contour-ordered correlators as a sum over time-order permutations acting on a funda- mental array of Wightman correlators. We decompose this Wightman array in a basis of column vectors, which provide a natural generalisation of the familiar retarded-advanced basis in the finite temperature Schwinger-Keldysh formalism. The coefficients of this de- composition take the form of generalised spectral functions, which are Fourier transforms of nested and double commutators. Our construction extends a variety of classical results on spectral functions in the SK formalism at finite temperature to the OTO case.
We consider thermal Wightman correlators in a relativistic quantum field theory in the limit where the spatial momenta of the insertions become large while their frequencies stay fixed. We show that, in this limit, the size of these correlators is bounded by $e^{-beta R}$, where $R$ is the radius of the smallest sphere that contains the polygon formed by the momenta. We show that perturbative quantum field theories can saturate this bound through suitably high-order loop diagrams. We also consider holographic theories in $d$-spacetime dimensions, where we show that the leading two-point function of generalized free-fields saturates the bound in $d = 2$ and is below the bound for $d > 2$. We briefly discuss interactions in holographic theories and conclude with a discussion of several open problems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا