Do you want to publish a course? Click here

Mapping Monotonic Restrictions in Inductive Inference

389   0   0.0 ( 0 )
 Added by Vanja Dosko\\v{c}
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In language learning in the limit we investigate computable devices (learners) learning formal languages. Through the years, many natural restrictions have been imposed on the studied learners. As such, monotonic restrictions always enjoyed particular attention as, although being a natural requirement, monotonic learners show significantly diverse behaviour when studied in different settings. A recent study thoroughly analysed the learning capabilities of strongly monotone learners imposed with memory restrictions and various additional requirements. The unveiled differences between explanatory and behaviourally correct such learners motivate our studies of monotone learners dealing with the same restrictions. We reveal differences and similarities between monotone learners and their strongly monotone counterpart when studied with various additional restrictions. In particular, we show that explanatory monotone learners, although known to be strictly stronger, do (almost) preserve the pairwise relation as seen in strongly monotone learning. Contrasting this similarity, we find substantial differences when studying behaviourally correct monotone learners. Most notably, we show that monotone learners, as opposed to their strongly monotone counterpart, do heavily rely on the order the information is given in, an unusual result for behaviourally correct learners.

rate research

Read More

We study learners (computable devices) inferring formal languages, a setting referred to as language learning in the limit or inductive inference. In particular, we require the learners we investigate to be witness-based, that is, to justify each of their mind changes. Besides being a natural requirement for a learning task, this restriction deserves special attention as it is a specialization of various important learning paradigms. In particular, with the help of witness-based learning, explanatory learners are shown to be equally powerful under these seemingly incomparable paradigms. Nonetheless, until now, witness-based learners have only been studied sparsely. In this work, we conduct a thorough study of these learners both when requiring syntactic and semantic convergence and obtain normal forms thereof. In the former setting, we extend known results such that they include witness-based learning and generalize these to hold for a variety of learners. Transitioning to behaviourally correct learning, we also provide normal forms for semantically witness-based learners. Most notably, we show that set-driven globally semantically witness-based learners are equally powerful as their Gold-style semantically conservative counterpart. Such results are key to understanding the, yet undiscovered, mutual relation between various important learning paradigms when learning behaviourally correctly.
124 - Antoine Ledent , Rodrigo Alves , 2020
We propose orthogonal inductive matrix completion (OMIC), an interpretable approach to matrix completion based on a sum of multiple orthonormal side information terms, together with nuclear-norm regularization. The approach allows us to inject prior knowledge about the singular vectors of the ground truth matrix. We optimize the approach by a provably converging algorithm, which optimizes all components of the model simultaneously. We study the generalization capabilities of our method in both the distribution-free setting and in the case where the sampling distribution admits uniform marginals, yielding learning guarantees that improve with the quality of the injected knowledge in both cases. As particular cases of our framework, we present models which can incorporate user and item biases or community information in a joint and additive fashion. We analyse the performance of OMIC on several synthetic and real datasets. On synthetic datasets with a sliding scale of user bias relevance, we show that OMIC better adapts to different regimes than other methods. On real-life datasets containing user/items recommendations and relevant side information, we find that OMIC surpasses the state-of-the-art, with the added benefit of greater interpretability.
Many deep reinforcement learning algorithms contain inductive biases that sculpt the agents objective and its interface to the environment. These inductive biases can take many forms, including domain knowledge and pretuned hyper-parameters. In general, there is a trade-off between generality and performance when algorithms use such biases. Stronger biases can lead to faster learning, but weaker biases can potentially lead to more general algorithms. This trade-off is important because inductive biases are not free; substantial effort may be required to obtain relevant domain knowledge or to tune hyper-parameters effectively. In this paper, we re-examine several domain-specific components that bias the objective and the environmental interface of common deep reinforcement learning agents. We investigated whether the performance deteriorates when these components are replaced with adaptive solutions from the literature. In our experiments, performance sometimes decreased with the adaptive components, as one might expect when comparing to components crafted for the domain, but sometimes the adaptive components performed better. We investigated the main benefit of having fewer domain-specific components, by comparing the learning performance of the two systems on a different set of continuous control problems, without additional tuning of either system. As hypothesized, the system with adaptive components performed better on many of the new tasks.
55 - Zhe Xu 2020
Autonomous systems embedded with machine learning modules often rely on deep neural networks for classifying different objects of interest in the environment or different actions or strategies to take for the system. Due to the non-linearity and high-dimensionality of deep neural networks, the interpretability of the autonomous systems is compromised. Besides, the machine learning methods in autonomous systems are mostly data-intensive and lack commonsense knowledge and reasoning that are natural to humans. In this paper, we propose the framework of temporal logic classifier-in-the-loop systems. The temporal logic classifiers can output different actions to take for an autonomous system based on the environment, such that the behavior of the autonomous system can satisfy a given temporal logic specification. Our approach is robust and provably-correct, as we can prove that the behavior of the autonomous system can satisfy a given temporal logic specification in the presence of (bounded) disturbances.
Linear interpolation between initial neural network parameters and converged parameters after training with stochastic gradient descent (SGD) typically leads to a monotonic decrease in the training objective. This Monotonic Linear Interpolation (MLI) property, first observed by Goodfellow et al. (2014) persists in spite of the non-convex objectives and highly non-linear training dynamics of neural networks. Extending this work, we evaluate several hypotheses for this property that, to our knowledge, have not yet been explored. Using tools from differential geometry, we draw connections between the interpolated paths in function space and the monotonicity of the network - providing sufficient conditions for the MLI property under mean squared error. While the MLI property holds under various settings (e.g. network architectures and learning problems), we show in practice that networks violating the MLI property can be produced systematically, by encouraging the weights to move far from initialization. The MLI property raises important questions about the loss landscape geometry of neural networks and highlights the need to further study their global properties.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا