No Arabic abstract
We propose orthogonal inductive matrix completion (OMIC), an interpretable approach to matrix completion based on a sum of multiple orthonormal side information terms, together with nuclear-norm regularization. The approach allows us to inject prior knowledge about the singular vectors of the ground truth matrix. We optimize the approach by a provably converging algorithm, which optimizes all components of the model simultaneously. We study the generalization capabilities of our method in both the distribution-free setting and in the case where the sampling distribution admits uniform marginals, yielding learning guarantees that improve with the quality of the injected knowledge in both cases. As particular cases of our framework, we present models which can incorporate user and item biases or community information in a joint and additive fashion. We analyse the performance of OMIC on several synthetic and real datasets. On synthetic datasets with a sliding scale of user bias relevance, we show that OMIC better adapts to different regimes than other methods. On real-life datasets containing user/items recommendations and relevant side information, we find that OMIC surpasses the state-of-the-art, with the added benefit of greater interpretability.
Recently, the graph neural network (GNN) has shown great power in matrix completion by formulating a rating matrix as a bipartite graph and then predicting the link between the corresponding user and item nodes. The majority of GNN-based matrix completion methods are based on Graph Autoencoder (GAE), which considers the one-hot index as input, maps a user (or item) index to a learnable embedding, applies a GNN to learn the node-specific representations based on these learnable embeddings and finally aggregates the representations of the target users and its corresponding item nodes to predict missing links. However, without node content (i.e., side information) for training, the user (or item) specific representation can not be learned in the inductive setting, that is, a model trained on one group of users (or items) cannot adapt to new users (or items). To this end, we propose an inductive matrix completion method using GAE (IMC-GAE), which utilizes the GAE to learn both the user-specific (or item-specific) representation for personalized recommendation and local graph patterns for inductive matrix completion. Specifically, we design two informative node features and employ a layer-wise node dropout scheme in GAE to learn local graph patterns which can be generalized to unseen data. The main contribution of our paper is the capability to efficiently learn local graph patterns in GAE, with good scalability and superior expressiveness compared to previous GNN-based matrix completion methods. Furthermore, extensive experiments demonstrate that our model achieves state-of-the-art performance on several matrix completion benchmarks. Our official code is publicly available.
We give an online algorithm and prove novel mistake and regret bounds for online binary matrix completion with side information. The mistake bounds we prove are of the form $tilde{O}(D/gamma^2)$. The term $1/gamma^2$ is analogous to the usual margin term in SVM (perceptron) bounds. More specifically, if we assume that there is some factorization of the underlying $m times n$ matrix into $P Q^intercal$ where the rows of $P$ are interpreted as classifiers in $mathcal{R}^d$ and the rows of $Q$ as instances in $mathcal{R}^d$, then $gamma$ is the maximum (normalized) margin over all factorizations $P Q^intercal$ consistent with the observed matrix. The quasi-dimension term $D$ measures the quality of side information. In the presence of vacuous side information, $D= m+n$. However, if the side information is predictive of the underlying factorization of the matrix, then in an ideal case, $D in O(k + ell)$ where $k$ is the number of distinct row factors and $ell$ is the number of distinct column factors. We additionally provide a generalization of our algorithm to the inductive setting. In this setting, we provide an example where the side information is not directly specified in advance. For this example, the quasi-dimension $D$ is now bounded by $O(k^2 + ell^2)$.
Feature missing is a serious problem in many applications, which may lead to low quality of training data and further significantly degrade the learning performance. While feature acquisition usually involves special devices or complex process, it is expensive to acquire all feature values for the whole dataset. On the other hand, features may be correlated with each other, and some values may be recovered from the others. It is thus important to decide which features are most informative for recovering the other features as well as improving the learning performance. In this paper, we try to train an effective classification model with least acquisition cost by jointly performing active feature querying and supervised matrix completion. When completing the feature matrix, a novel target function is proposed to simultaneously minimize the reconstruction error on observed entries and the supervised loss on training data. When querying the feature value, the most uncertain entry is actively selected based on the variance of previous iterations. In addition, a bi-objective optimization method is presented for cost-aware active selection when features bear different acquisition costs. The effectiveness of the proposed approach is well validated by both theoretical analysis and experimental study.
Inductive Matrix Completion (IMC) is an important class of matrix completion problems that allows direct inclusion of available features to enhance estimation capabilities. These models have found applications in personalized recommendation systems, multilabel learning, dictionary learning, etc. This paper examines a general class of noisy matrix completion tasks where the underlying matrix is following an IMC model i.e., it is formed by a mixing matrix (a priori unknown) sandwiched between two known feature matrices. The mixing matrix here is assumed to be well approximated by the product of two sparse matrices---referred here to as sparse factor models. We leverage the main theorem of Soni:2016:NMC and extend it to provide theoretical error bounds for the sparsity-regularized maximum likelihood estimators for the class of problems discussed in this paper. The main result is general in the sense that it can be used to derive error bounds for various noise models. In this paper, we instantiate our main result for the case of Gaussian noise and provide corresponding error bounds in terms of squared loss.
Due to the insufficient measurements in the distribution system state estimation (DSSE), full observability and redundant measurements are difficult to achieve without using the pseudo measurements. The matrix completion state estimation (MCSE) combines the matrix completion and power system model to estimate voltage by exploring the low-rank characteristics of the matrix. This paper proposes a robust matrix completion state estimation (RMCSE) to estimate the voltage in a distribution system under a low-observability condition. Tradition state estimation weighted least squares (WLS) method requires full observability to calculate the states and needs redundant measurements to proceed a bad data detection. The proposed method improves the robustness of the MCSE to bad data by minimizing the rank of the matrix and measurements residual with different weights. It can estimate the system state in a low-observability system and has robust estimates without the bad data detection process in the face of multiple bad data. The method is numerically evaluated on the IEEE 33-node radial distribution system. The estimation performance and robustness of RMCSE are compared with the WLS with the largest normalized residual bad data identification (WLS-LNR), and the MCSE.