Do you want to publish a course? Click here

Experimental Entanglement Quantification for Unknown Quantum States in a Semi-Device-Independent Manner

156   0   0.0 ( 0 )
 Added by Bi-Heng Liu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using the concept of non-degenerate Bell inequality, we show that quantum entanglement, the critical resource for various quantum information processing tasks, can be quantified for any unknown quantum states in a semi-device-independent manner, where the quantification is based on the experimentally obtained probability distribution and beforehand knowledge on quantum dimension only. Specifically, as an application of our approach on multi-level systems, we experimentally quantify the entanglement of formation and the entanglement of distillation for qutrit-qutrit quantum systems. In addition, to demonstrate our approach for multi-partite systems, we further quantify the geometry measure of entanglement of three-qubit quantum systems. Our results supply a general way to reliably quantify entanglement in multi-level and multi-partite systems, thus paving the way to characterize many-body quantum systems by quantifying involved entanglement.

rate research

Read More

The problem of demonstrating entanglement is central to quantum information processing applications. Resorting to standard entanglement witnesses requires one to perfectly trust the implementation of the measurements to be performed on the entangled state, which may be an unjustified assumption. Inspired by the recent work of F. Buscemi [Phys. Rev. Lett. 108, 200401 (2012)], we introduce the concept of Measurement-Device-Independent Entanglement Witnesses (MDI-EWs), which allow one to demonstrate entanglement of all entangled quantum states with untrusted measurement apparatuses. We show how to systematically obtain such MDI-EWs from standard entanglement witnesses. Our construction leads to MDI-EWs that are loss-tolerant, and can be implemented with current technology.
95 - Yu Guo , Bai-Chu Yu , Xiao-Min Hu 2019
The certification of entanglement dimensionality is of great importance in characterizing quantum systems. Recently, it is pointed out that quantum correlation of high-dimensional states can be simulated with a sequence of lower-dimensional states. Such problem may render existing characterization protocols unreliable---the observed entanglement may not be a truly high-dimensional one. Here, we introduce the notion of irreducible entanglement to capture its dimensionality that is indecomposable in terms of a sequence of lower-dimensional entangled systems. We prove this new feature can be detected in a measurement-device-independent manner with an entanglement witness protocol. To demonstrate the practicability of this technique, we experimentally apply it on a 3-dimensional bipartite state and the result certifies the existence of irreducible (at least) 3-dimensional entanglement.
Certifying the entanglement of quantum states with Bell inequalities allows one to guarantee the security of quantum information protocols independently of imperfections in the measuring devices. Here we present a similar procedure for witnessing entangled measurements, which play a central role in many quantum information tasks. Our procedure is termed semi-device-independent, as it uses uncharacterized quantum preparations of fixed Hilbert space dimension. Using a photonic setup, we experimentally certify an entangled measurement using measurement statistics only. We also apply our techniques to certify unentangled but nevertheless inherently quantum measurements.
Applications of randomness such as private key generation and public randomness beacons require small blocks of certified random bits on demand. Device-independent quantum random number generators can produce such random bits, but existing quantum-proof protocols and loophole-free implementations suffer from high latency, requiring many hours to produce any random bits. We demonstrate device-independent quantum randomness generation from a loophole-free Bell test with a more efficient quantum-proof protocol, obtaining multiple blocks of $512$ bits with an average experiment time of less than $5$ min per block and with a certified error bounded by $2^{-64}approx 5.42times 10^{-20}$.
Bell nonlocality between distant quantum systems---i.e., joint correlations which violate a Bell inequality---can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure protocols for quantum information tasks such as cryptographic key distribution. However, complete verification of Bell nonlocality requires high detection efficiencies, and is not robust to the typical transmission losses that occur in long distance applications. In contrast, quantum steering, a weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies and high losses. The cost is that current steering-verification protocols require complete trust in one of the measurement devices and its operator, allowing only one-sided secure key distribution. We present device-independent steering protocols that remove this need for trust, even when Bell nonlocality is not present. We experimentally demonstrate this principle for singlet states and states that do not violate a Bell inequality.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا