Do you want to publish a course? Click here

Learning Exponential Family Graphical Models with Latent Variables using Regularized Conditional Likelihood

181   0   0.0 ( 0 )
 Added by Armeen Taeb
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Fitting a graphical model to a collection of random variables given sample observations is a challenging task if the observed variables are influenced by latent variables, which can induce significant confounding statistical dependencies among the observed variables. We present a new convex relaxation framework based on regularized conditional likelihood for latent-variable graphical modeling in which the conditional distribution of the observed variables conditioned on the latent variables is given by an exponential family graphical model. In comparison to previously proposed tractable methods that proceed by characterizing the marginal distribution of the observed variables, our approach is applicable in a broader range of settings as it does not require knowledge about the specific form of distribution of the latent variables and it can be specialized to yield tractable approaches to problems in which the observed data are not well-modeled as Gaussian. We demonstrate the utility and flexibility of our framework via a series of numerical experiments on synthetic as well as real data.



rate research

Read More

We propose a Bayesian approximate inference method for learning the dependence structure of a Gaussian graphical model. Using pseudo-likelihood, we derive an analytical expression to approximate the marginal likelihood for an arbitrary graph structure without invoking any assumptions about decomposability. The majority of the existing methods for learning Gaussian graphical models are either restricted to decomposable graphs or require specification of a tuning parameter that may have a substantial impact on learned structures. By combining a simple sparsity inducing prior for the graph structures with a default reference prior for the model parameters, we obtain a fast and easily applicable scoring function that works well for even high-dimensional data. We demonstrate the favourable performance of our approach by large-scale comparisons against the leading methods for learning non-decomposable Gaussian graphical models. A theoretical justification for our method is provided by showing that it yields a consistent estimator of the graph structure.
The last decade witnessed the development of algorithms that completely solve the identifiability problem for causal effects in hidden variable causal models associated with directed acyclic graphs. However, much of this machinery remains underutilized in practice owing to the complexity of estimating identifying functionals yielded by these algorithms. In this paper, we provide simple graphical criteria and semiparametric estimators that bridge the gap between identification and estimation for causal effects involving a single treatment and a single outcome. First, we provide influence function based doubly robust estimators that cover a significant subset of hidden variable causal models where the effect is identifiable. We further characterize an important subset of this class for which we demonstrate how to derive the estimator with the lowest asymptotic variance, i.e., one that achieves the semiparametric efficiency bound. Finally, we provide semiparametric estimators for any single treatment causal effect parameter identified via the aforementioned algorithms. The resulting estimators resemble influence function based estimators that are sequentially reweighted, and exhibit a partial double robustness property, provided the parts of the likelihood corresponding to a set of weight models are correctly specified. Our methods are easy to implement and we demonstrate their utility through simulations.
Deep latent variable models (DLVMs) combine the approximation abilities of deep neural networks and the statistical foundations of generative models. Variational methods are commonly used for inference; however, the exact likelihood of these models has been largely overlooked. The purpose of this work is to study the general properties of this quantity and to show how they can be leveraged in practice. We focus on important inferential problems that rely on the likelihood: estimation and missing data imputation. First, we investigate maximum likelihood estimation for DLVMs: in particular, we show that most unconstrained models used for continuous data have an unbounded likelihood function. This problematic behaviour is demonstrated to be a source of mode collapse. We also show how to ensure the existence of maximum likelihood estimates, and draw useful connections with nonparametric mixture models. Finally, we describe an algorithm for missing data imputation using the exact conditional likelihood of a deep latent variable model. On several data sets, our algorithm consistently and significantly outperforms the usual imputation scheme used for DLVMs.
In our recent paper, we showed that in exponential family, contrastive divergence (CD) with fixed learning rate will give asymptotically consistent estimates cite{wu2016convergence}. In this paper, we establish consistency and convergence rate of CD with annealed learning rate $eta_t$. Specifically, suppose CD-$m$ generates the sequence of parameters ${theta_t}_{t ge 0}$ using an i.i.d. data sample $mathbf{X}_1^n sim p_{theta^*}$ of size $n$, then $delta_n(mathbf{X}_1^n) = limsup_{t to infty} Vert sum_{s=t_0}^t eta_s theta_s / sum_{s=t_0}^t eta_s - theta^* Vert$ converges in probability to 0 at a rate of $1/sqrt[3]{n}$. The number ($m$) of MCMC transitions in CD only affects the coefficient factor of convergence rate. Our proof is not a simple extension of the one in cite{wu2016convergence}. which depends critically on the fact that ${theta_t}_{t ge 0}$ is a homogeneous Markov chain conditional on the observed sample $mathbf{X}_1^n$. Under annealed learning rate, the homogeneous Markov property is not available and we have to develop an alternative approach based on super-martingales. Experiment results of CD on a fully-visible $2times 2$ Boltzmann Machine are provided to demonstrate our theoretical results.
Gaussian Graphical models (GGM) are widely used to estimate the network structures in many applications ranging from biology to finance. In practice, data is often corrupted by latent confounders which biases inference of the underlying true graphical structure. In this paper, we compare and contrast two strategies for inference in graphical models with latent confounders: Gaussian graphical models with latent variables (LVGGM) and PCA-based removal of confounding (PCA+GGM). While these two approaches have similar goals, they are motivated by different assumptions about confounding. In this paper, we explore the connection between these two approaches and propose a new method, which combines the strengths of these two approaches. We prove the consistency and convergence rate for the PCA-based method and use these results to provide guidance about when to use each method. We demonstrate the effectiveness of our methodology using both simulations and in two real-world applications.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا