Do you want to publish a course? Click here

Integral-Field Spectroscopy of Fast Outflows in Dwarf Galaxies with AGN

462   0   0.0 ( 0 )
 Added by Weizhe Liu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Feedback likely plays a vital role in the formation of dwarf galaxies. While stellar processes have long been considered the main source of feedback, recent studies have revealed tantalizing signs of AGN feedback in dwarf galaxies. In this paper, we report the results from an integral-field spectroscopic study of a sample of eight dwarf galaxies with known AGN and suspected outflows. Outflows are detected in seven of them. The outflows are fast, with 50-percentile (median) velocity of up to $sim$240 km s$^{-1}$ and 80-percentile line width reaching $sim$1200 km s$^{-1}$, in clear contrast with the more quiescent kinematics of the host gas and stellar components. The outflows are generally spatially extended on a scale of several hundred pc to a few kpc, although our data do not clearly resolve the outflows in three targets. The outflows appear to be primarily photoionized by the AGN rather than shocks or young, massive stars. The kinematics and energetics of these outflows suggest that they are primarily driven by the AGN, although the star formation activity in these objects may also contribute to the energy input. A small but non-negligible portion of the outflowing material likely escapes the main body of the host galaxy and contributes to the enrichment of the circumgalactic medium. Overall, the impact of these outflows on their host galaxies is similar to those taking place in the more luminous AGN in the low-redshift universe.



rate research

Read More

167 - Guilin Liu 2015
Ultravoilet (UV) absorption lines provide abundant spectroscopic information enabling the probe of the physical conditions in AGN outflows, but the outflow radii (and the energetics consequently) can only be determined indirectly. In this paper, we present the first direct test of these determinations using integral field unit (IFU) spectroscopy. We have conducted Gemini IFU mapping of the ionized gas nebulae surrounding two AGNs, whose outflow radii have been constrained by UV absorption line analyses. In Mrk 509, we find a quasi-spherical outflow with a radius of 1.2 kpc and a velocity of $sim290$ km s$^{-1}$, while IRAS F04250$-$5718 is driving a biconical outflow extending out to 2.9 kpc, with a velocity of $sim580$ km s$^{-1}$ and an opening angle of $sim70^{circ}$. The derived mass flow rate is $sim5$ and $>1$ M$_{odot}$ yr$^{-1}$, respectively, and the kinetic luminosity is $gtrsim1times10^{41}$ erg s$^{-1}$ for both. Adopting the outflow radii and geometric parameters measured from IFU, absorption line analyses would yield mass flow rates and kinetic luminosities in agreement with the above results within a factor of $sim2$. We conclude that the spatial locations, kinematics and energetics revealed by this IFU emission-line study are consistent with pre-existing UV absorption line analyses, providing a long-awaited direct confirmation of the latter as an effective approach for characterizing outflow properties.
494 - David S. N. Rupke 2011
The quasi-stellar object (QSO)/merger Mrk 231 is arguably the nearest and best laboratory for studying QSO feedback. It hosts several outflows, including broad-line winds, radio jets, and a poorly-understood kpc scale outflow. In this Letter, we present integral field spectroscopy from the Gemini telescope that represents the first unambiguous detection of a wide-angle, kpc scale outflow from a powerful QSO. Using neutral gas absorption, we show that the nuclear region hosts an outflow with blueshifted velocities reaching 1100 km/s, extending 2-3 kpc from the nucleus in all directions in the plane of the sky. A radio jet impacts the outflow north of the nucleus, accelerating it to even higher velocities (up to 1400 km/s). Finally, 3.5 kpc south of the nucleus, star formation is simultaneously powering an outflow that reaches more modest velocities of only 570 km/s. Blueshifted ionized gas is also detected around the nucleus at lower velocities and smaller scales. The mass and energy flux from the outflow are >~2.5 times the star formation rate and >~0.7% of the active galactic nucleus luminosity, consistent with negative feedback models of QSOs.
The extreme infrared (IR) luminosity of local luminous and ultra-luminous IR galaxies (U/LIRGs; 11 < log LIR /Lsun < 12 and log LIR /Lsun > 12, respectively) is mainly powered by star-formation processes triggered by mergers or interactions. While U/LIRGs are rare locally, at z > 1, they become more common, they dominate the star-formation rate (SFR) density, and a fraction of them are found to be normal disk galaxies. Therefore, there must be an evolution of the mechanism triggering these intense starbursts with redshift. To investigate this evolution, we present new optical SWIFT integral field spectroscopic H{alpha}+[NII] observations of a sample of 9 intermediate-z (0.2 < z < 0.4) U/LIRG systems selected from Herschel 250{mu}m observations. The main results are the following: (a) the ratios between the velocity dispersion and the rotation curve amplitude indicate that 10-25% (1-2 out of 8) might be compatible with being isolated disks while the remaining objects are interacting/merging systems; (b) the ratio between un-obscured and obscured SFR traced by H{alpha} and LIR, respectively, is similar in both local and these intermediate-z U/LIRGs; and (c) the ratio between 250{mu}m and the total IR luminosities of these intermediate-z U/LIRGs is higher than that of local U/LIRGs with the same LIR . This indicates a reduced dust temperature in these intermediate-z U/LIRGs. This, together with their already measured enhanced molecular gas content, suggests that the interstellar medium conditions are different in our sample of intermediate-z galaxies when compared to local U/LIRGs.
We present results on integral-field optical spectroscopy of five luminous Blue Compact Dwarf galaxies. The data were obtained using the fiber system INTEGRAL attached at the William Herschel telescope. The galaxies Mrk 370, Mrk 35, Mrk 297, Mrk 314 and III Zw 102 were observed. The central 33x29 regions of the galaxies were mapped with a spatial resolution of 2/spaxel, except for Mrk 314, in which we observed the central 16x12 region with a resolution of 0.9/spaxel$. We use high-resolution optical images to isolate the star-forming knots in the objects; line ratios, electron densities and oxygen abundances in each of these regions are computed. We build continuum and emission-line intensity maps as well as maps of the most relevant line ratios: [OIII]5007Hb, [NII]6584Ha, and HaHb, which allow us to obtain spatial information on the ionization structure and mechanisms. We also derive the gas velocity field from the Ha and [OIII]5007 emission lines. We find that all the five galaxies are in the high end of the metallicity range of Blue Compact Dwarf galaxies, with oxygen abundances varying from Zsun~0.3 to Zsun~1.5. The objects show HII-like ionization in the whole field of view, except the outer regions of IIIZw102 whose large [NII]6584/Ha values suggest the presence of shocks. The five galaxies display inhomogeneous extinction patterns, and three of them have high Ha/Hb ratios, indicative of a large dust content; all galaxies display complex, irregular velocity fields in their inner regions.
We study outflows driven by Active Galactic Nuclei (AGNs) using high- resolution simulations of idealized z=2 isolated disk galaxies. Episodic accretion events lead to outflows with velocities >1000 km/s and mass outflow rates up to the star formation rate (several tens of Msun/yr). Outflowing winds escape perpendicular to the disk with wide opening angles, and are typically asymmetric (i.e. unipolar) because dense gas above or below the AGN in the resolved disk inhibits outflow. Owing to rapid variability in the accretion rates, outflowing gas may be detectable even when the AGN is effectively off. The highest velocity outflows are sometimes, but not always, concentrated within 2-3 kpc of the galactic center during the peak accretion. With our purely thermal AGN feedback model -- standard in previous literature -- the outflowing material is mostly hot (10^6 K) and diffuse (nH<10^(-2) cm-3), but includes a cold component entrained in the hot wind. Despite the powerful bursts and high outflow rates, AGN feedback has little effect on the dense gas in the galaxy disk. Thus AGN-driven outflows in our simulations do not cause rapid quenching of star-formation, although they may remove significant amounts of gas of long (>Gyr) timescales.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا