Do you want to publish a course? Click here

GOAT: GPU Outsourcing of Deep Learning Training With Asynchronous Probabilistic Integrity Verification Inside Trusted Execution Environment

88   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Machine learning models based on Deep Neural Networks (DNNs) are increasingly deployed in a wide range of applications ranging from self-driving cars to COVID-19 treatment discovery. To support the computational power necessary to learn a DNN, cloud environments with dedicated hardware support have emerged as critical infrastructure. However, there are many integrity challenges associated with outsourcing computation. Various approaches have been developed to address these challenges, building on trusted execution environments (TEE). Yet, no existing approach scales up to support realistic integrity-preserving DNN model training for heavy workloads (deep architectures and millions of training examples) without sustaining a significant performance hit. To mitigate the time gap between pure TEE (full integrity) and pure GPU (no integrity), we combine random verification of selected computation steps with systematic adjustments of DNN hyper-parameters (e.g., a narrow gradient clipping range), hence limiting the attackers ability to shift the model parameters significantly provided that the step is not selected for verification during its training phase. Experimental results show the new approach achieves 2X to 20X performance improvement over pure TEE based solution while guaranteeing a very high probability of integrity (e.g., 0.999) with respect to state-of-the-art DNN backdoor attacks.



rate research

Read More

ARM TrustZone is the de-facto hardware TEE implementation on mobile devices like smartphones. As a vendor-centric TEE, TrustZone greatly overlooks the strong protection demands and requirements from the App developers. Several security solutions have been proposed to enable the TEE-assisted isolation in the Normal World of ARM, attempting to balance the security and usability. However, they are still not full-fledged in serving Apps needs. In this paper, we introduce LEAP, which is a lightweight App developer Centric TEE solution in the Normal World. LEAP offers the auto DevOps tool to help developers to prepare the codes running on it, enables isolated codes to execute in parallel and access peripheral (e.g. mobile GPUs) with ease, and dynamically manage system resources upon Apps requests. We implement the LEAP prototype on the off-the-shelf ARM platform without any hardware change. We perform the comprehensive analyses and experiments to demonstrate that LEAP is efficient in design, comprehensive in support, and convenient in adoption.
Privacy and security-related concerns are growing as machine learning reaches diverse application domains. The data holders want to train with private data while exploiting accelerators, such as GPUs, that are hosted in the cloud. However, Cloud systems are vulnerable to attackers that compromise the privacy of data and integrity of computations. This work presents DarKnight, a framework for large DNN training while protecting input privacy and computation integrity. DarKnight relies on cooperative execution between trusted execution environments (TEE) and accelerators, where the TEE provides privacy and integrity verification, while accelerators perform the computation heavy linear algebraic operations.
319 - Hung Dang , Ee-Chien Chang 2019
Data privacy is unarguably of extreme importance. Nonetheless, there exist various daunting challenges to safe-guarding data privacy. These challenges stem from the fact that data owners have little control over their data once it has transgressed their local storage and been managed by third parties whose trustworthiness is questionable at times. Our work seeks to enhance data privacy by constructing a self-expiring data capsule. Sensitive data is encapsulated into a capsule which is associated with an access policy an expiring condition. The former indicates eligibility of functions that can access the data, and the latter dictates when the data should become inaccessible to anyone, including the previously eligible functions. Access to the data capsule, as well as its dismantling once the expiring condition is met, are governed by a committee of independent and mutually distrusting nodes. The pivotal contribution of our work is an integration of hardware primitive, state machine replication and threshold secret sharing in the design of the self-expiring data encapsulation framework. We implement the proposed framework in a system called TEEKAP. Our empirical experiments conducted on a realistic deployment setting with the access control committee spanning across four geographical regions reveal that TEEKAP can process access requests at scale with sub-second latency.
Trusted Execution Environments (TEEs) are used to protect sensitive data and run secure execution for security-critical applications, by providing an environment isolated from the rest of the system. However, over the last few years, TEEs have been proven weak, as either TEEs built upon security-oriented hardware extensions (e.g., Arm TrustZone) or resorting to dedicated secure elements were exploited multiple times. In this project, we introduce Trusted Execution Environments On-Demand (TEEOD), a novel TEE design that leverages the programmable logic (PL) in the heterogeneous system on chips (SoC) as the secure execution environment. Unlike other TEE designs, TEEOD can provide high-bandwidth connections and physical on-chip isolation. We implemented a proof-of-concept (PoC) implementation targeting an Ultra96-V2 platform. The conducted evaluation demonstrated TEEOD can host up to 6 simultaneous enclaves with a resource usage per enclave of 7.0%, 3.8%, and 15.3% of the total LUTs, FFs, and BRAMS, respectively. To demonstrate the practicability of TEEOD in real-world applications, we successfully run a legacy open-source Bitcoin wallet.
Existing speculative execution attacks are limited to breaching confidentiality of data beyond privilege boundary, the so-called spectre-type attacks. All of them utilize the changes in microarchitectural buffers made by the speculative execution to leak data. We show that the speculative execution can be abused to break data integrity. We observe that the speculative execution not only leaves traces in the microarchitectural buffers but also induces side effects within DRAM, that is, the speculative execution can trigger an access to an illegitimate address in DRAM. If the access to DRAM is frequent enough, then architectural changes (i.e., permanent bit flips in DRAM) will occur, which we term GhostKnight. With the power of of GhostKnight, an attacker is essentially able to cross different privilege boundaries and write exploitable bits to other privilege domains. In our future work, we will develop a GhostKnight-based exploit to cross a trusted execution environment, defeat a 1024-bit RSA exponentiation implementation and obtain a controllable signature.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا