No Arabic abstract
We present a way to search for light scalar dark matter (DM), seeking to exploit putative coupling between dark matter scalar fields and fundamental constants, by searching for frequency modulations in direct comparisons between frequency stable oscillators. Specifically we compare a Cryogenic Sapphire Oscillator (CSO), Hydrogen Maser (HM) atomic oscillator and a bulk acoustic wave quartz oscillator (OCXO). This work includes the first calculation of the dependence of acoustic oscillators on variations of the fundamental constants, and demonstration that they can be a sensitive tool for scalar DM experiments. Results are presented based on 16 days of data in comparisons between the HM and OCXO, and 2 days of comparison between the OCXO and CSO. No evidence of oscillating fundamental constants consistent with a coupling to scalar dark matter is found, and instead limits on the strength of these couplings as a function of the dark matter mass are determined. We constrain the dimensionless coupling constant $d_e$ and combination $|d_{m_e}-d_g|$ across the mass band $4.4times10^{-19}lesssim m_varphi lesssim 6.8times10^{-14}:text{eV} c^{-2}$, with most sensitive limits $d_egtrsim1.59times10^{-1}$, $|d_{m_e}-dg|gtrsim6.97times10^{-1}$. Notably, these limits do not rely on Maximum Reach Analysis (MRA), instead employing the more general coefficient separation technique. This experiment paves the way for future, highly sensitive experiments based on state-of-the-art acoustic oscillators, and we show that these limits can be competitive with the best current MRA-based exclusion limits.
Axion-like particles are a broad class of dark matter candidates which are expected to behave as a coherent, classical field with a weak coupling to photons. Research into the detectability of these particles with laser interferometers has recently revealed a number of promising experimental designs. Inspired by these ideas, we propose the Axion Detection with Birefringent Cavities (ADBC) experiment, a new axion interferometry concept using a cavity that exhibits birefringence between its two, linearly polarized laser eigenmodes. This experimental concept overcomes several limitations of the designs currently in the literature, and can be practically realized in the form of a simple bowtie cavity with tunable mirror angles. Our design thereby increases the sensitivity to the axion-photon coupling over a wide range of axion masses.
Many models containing particles which are candidates for dark matter, assume the standard model particles and the dark matter candidates are mediated by a spin-0 particle. At the LHC, one can use these models for dark matter searches. One of the possible approaches for the search of these models is by considering the decay of the spin-0 particle to a pair of $tbar{t}$, thus modifying the pattern of the top quark pair invariant mass spectrum. This search suggests a good sensitivity in a parameter space different than the more traditional searches. We examine this sensitivity and put limits on two benchmark models containing candidates for dark matter, using previous ATLAS results. It was found that when the mediator mass ($m_{Y_0}$) and the dark matter candidate mass ($m_{chi}$) have values of $m_{Y_0} sim 2 cdot m_{chi}$, mediator masses in the range of $[400,600]$ GeV are excluded. We compare our results to direct detection experiments and show that we gain sensitivity for new regions which are not covered by other searches.
Several models of dark matter suggest the existence of dark sectors consisting of SU(3)_C x SU(2)_L x U(1)_Y singlet fields. These sectors of particles do not interact with the ordinary matter directly but could couple to it via gravity. In addition to gravity, there might be another very weak interaction between the ordinary and dark matter mediated by U(1) gauge bosons A (dark photons) mixing with our photons. In a class of models the corresponding dark gauge bosons could be light and have the $gamma$-A coupling strength laying in the experimentally accessible and theoretically interesting region. If such A mediators exist, their di-electron decays A -> e+e- could be searched for in a light-shining-through-a-wall experiment looking for an excess of events with the two-shower signature generated by a single high energy electron in the detector. A proposal to perform such an experiment aiming to probe the still unexplored area of the mixing strength 10^-5 < $epsilon$ < 10^-3 and masses M_A < 100 MeV by using 10-300 GeV electron beams from the CERN SPS is presented. The experiment can provide complementary coverage of the parameter space, which is intended to be probed by other searches. It has also a capability for a sensitive search for As decaying invisibly to dark-sector particles, such as dark matter, which could cover a significant part of the still allowed parameter space. The full running time of the proposed measurements is requested to be up to several months, and it could be taken at different SPS secondary beams.
The dark matter puzzle is one of the most important fundamental physics questions in 21 century. There is no doubt that solving the puzzle will be a new milestone for human beings in the way of deeper understanding the mother nature. Here we propose to use the Shanghai laser electron gamma source (SLEGS) to search for dark matter candidates particles, including dark pseudo scalar particles, dark scalar particles, and dark photons. Our simulations show that electron facilities like SLEGS with some upgrading could be competitive platforms in searching for light dark matter particles with mass under tens of keV.
We propose an experiment to search for a new gauge boson A in $e^+e^-$ annihilation by means of a positron beam incident on a gas hydrogen target internal to the bypass at the VEPP-3 storage ring. The search method is based on a missing mass spectra in the reaction $e^+e^-rightarrow gamma$ A. It allows observation of the A signal independently of its decay modes and life time. The projected result of this experiment corresponds to an upper limit on the square of the coupling constant $varepsilon^2=3cdot 10^{-8}$ with a signal-to-noise ratio of two to one at an A mass of 5-20 MeV.