Do you want to publish a course? Click here

Scheduling Opportunistic Links in Two-Tiered Reconfigurable Datacenters

319   0   0.0 ( 0 )
 Added by Stefan Schmid
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Reconfigurable optical topologies are emerging as a promising technology to improve the efficiency of datacenter networks. This paper considers the problem of scheduling opportunistic links in such reconfigurable datacenters. We study the online setting and aim to minimize flow completion times. The problem is a two-tier generalization of classic switch scheduling problems. We present a stable-matching algorithm which is $2cdot (2/varepsilon+1)$-competitive against an optimal offline algorithm, in a resource augmentation model: the online algorithm runs $2+varepsilon$ times faster. Our algorithm and result are fairly general and allow for different link delays and also apply to hybrid topologies which combine fixed and reconfigurable links. Our analysis is based on LP relaxation and dual fitting.



rate research

Read More

The coflow scheduling problem has emerged as a popular abstraction in the last few years to study data communication problems within a data center. In this basic framework, each coflow has a set of communication demands and the goal is to schedule many coflows in a manner that minimizes the total weighted completion time. A coflow is said to complete when all its communication needs are met. This problem has been extremely well studied for the case of complete bipartite graphs that model a data center with full bisection bandwidth and several approximation algorithms and effective heuristics have been proposed recently. In this work, we study a slightly different model of coflow scheduling in general graphs (to capture traffic between data centers) and develop practical and efficient approximation algorithms for it. Our main result is a randomized 2 approximation algorithm for the single path and free path model, significantly improving prior work. In addition, we demonstrate via extensive experiments that the algorithm is practical, easy to implement and performs well in practice.
Network Function Virtualization (NFV) is a promising technology that promises to significantly reduce the operational costs of network services by deploying virtualized network functions (VNFs) to commodity servers in place of dedicated hardware middleboxes. The VNFs are typically running on virtual machine instances in a cloud infrastructure, where the virtualization technology enables dynamic provisioning of VNF instances, to process the fluctuating traffic that needs to go through the network functions in a network service. In this paper, we target dynamic provisioning of enterprise network services - expressed as one or multiple service chains - in cloud datacenters, and design efficient online algorithms without requiring any information on future traffic rates. The key is to decide the number of instances of each VNF type to provision at each time, taking into consideration the server resource capacities and traffic rates between adjacent VNFs in a service chain. In the case of a single service chain, we discover an elegant structure of the problem and design an efficient randomized algorithm achieving a e/(e-1) competitive ratio. For multiple concurrent service chains, an online heuristic algorithm is proposed, which is O(1)-competitive. We demonstrate the effectiveness of our algorithms using solid theoretical analysis and trace-driven simulations.
This paper presents improved approximation algorithms for the problem of multiprocessor scheduling under uncertainty, or SUU, in which the execution of each job may fail probabilistically. This problem is motivated by the increasing use of distributed computing to handle large, computationally intensive tasks. In the SUU problem we are given n unit-length jobs and m machines, a directed acyclic graph G of precedence constraints among jobs, and unrelated failure probabilities q_{ij} for each job j when executed on machine i for a single timestep. Our goal is to find a schedule that minimizes the expected makespan, which is the expected time at which all jobs complete. Lin and Rajaraman gave the first approximations for this NP-hard problem for the special cases of independent jobs, precedence constraints forming disjoint chains, and precedence constraints forming trees. In this paper, we present asymptotically better approximation algorithms. In particular, we give an O(loglog min(m,n))-approximation for independent jobs (improving on the previously best O(log n)-approximation). We also give an O(log(n+m) loglog min(m,n))-approximation algorithm for precedence constraints that form disjoint chains (improving on the previously best O(log(n)log(m)log(n+m)/loglog(n+m))-approximation by a (log n/loglog n)^2 factor when n = poly(m). Our algorithm for precedence constraints forming chains can also be used as a component for precedence constraints forming trees, yielding a similar improvement over the previously best algorithms for trees.
The problem of attaining energy efficiency in distributed systems is of importance, but a general, non-domain-specific theory of energy-minimal scheduling is far from developed. In this paper, we classify the problems of energy-minimal scheduling and present theoretical foundations of the same. We derive results concerning energy-minimal scheduling of independent jobs in a distributed system with functionally similar machines with different working and idle power ratings. The machines considered in our system can have identical as well as different speeds. If the jobs can be divided into arbitrary parts, we show that the minimum-energy schedule can be generated in linear time and give exact scheduling algorithms. For the cases where jobs are non-divisible, we prove that the scheduling problems are NP-hard and also give approximation algorithms for the same along with their bounds.
Existing compact routing schemes, e.g., Thorup and Zwick [SPAA 2001] and Chechik [PODC 2013], often have no means to tolerate failures, once the system has been setup and started. This paper presents, to our knowledge, the first self-healing compact routing scheme. Besides, our schemes are developed for low memory nodes, i.e., nodes need only $O(log^2 n)$ memory, and are thus, compact schemes. We introduce two algorithms of independent interest: The first is CompactFT, a novel compact version (using only $O(log n)$ local memory) of the self-healing algorithm Forgiving Tree of Hayes et al. [PODC 2008]. The second algorithm (CompactFTZ) combines CompactFT with Thorup-Zwicks tree-based compact routing scheme [SPAA 2001] to produce a fully compact self-healing routing scheme. In the self-healing model, the adversary deletes nodes one at a time with the affected nodes self-healing locally by adding few edges. CompactFT recovers from each attack in only $O(1)$ time and $Delta$ messages, with only +3 degree increase and $O(log Delta)$ graph diameter increase, over any sequence of deletions ($Delta$ is the initial maximum degree). Additionally, CompactFTZ guarantees delivery of a packet sent from sender s as long as the receiver t has not been deleted, with only an additional $O(y log Delta)$ latency, where $y$ is the number of nodes that have been deleted on the path between $s$ and $t$. If $t$ has been deleted, $s$ gets informed and the packet removed from the network.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا