Do you want to publish a course? Click here

Searching for gravitational wave echoes in GWTC-1 and O3 events

133   0   0.0 ( 0 )
 Added by Yu-Tong Wang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gravitational wave (GW) echoes, if they exist, would be a probe to the near-horizon physics of black hole. In this brief report, we performed the Monte Carlo Markov Chain analysis to search for echo signal in all GWTC-1 and O3 GW events. We focus on the Insprial-Merger-Ringdown-Echo (IMRE) waveform, and apply the Bayesian model selection to compare the IMRE result with IMRs (no echo). We find no statistically significant ($<1sigma$ combined) evidence for the GW echoes and only individual GW events with the echoes at $1sim 2sigma$ significance.



rate research

Read More

We have examined gravitational wave echo signals for nine binary black hole merger events observed by Advanced LIGO and Virgo during the first and second observation runs. To construct an echo template, we consider Kerr spacetime, where the event horizon is replaced by a reflective membrane. We use frequency-dependent reflection rate at the angular potential barrier, which is fitted to the numerical data obtained by solving Teukolsky equations. This reflection rate gives a frequency-dependent transmission rate that is suppressed at lower frequencies in the template. We also take into account the overall phase shift of the waveform as a parameter, which arises when the wave is reflected at the membrane and potential barrier. Using this template based on black hole perturbation, we find no significant echo signals in the binary black hole merger events.
121 - Jing Ren , Di Wu 2021
Gravitational wave echoes may provide a smoking gun signal for new physics in the immediate vicinity of black holes. As a quasi-periodic signal in time, echoes are characterized by the nearly constant time delay, and its precise measurement can help reveal a Planck scale deviation outside of the would-be horizon. Different search methods have been developed for this quasi-periodic signal, while the searches suffer from large theoretical uncertainties of the echo waveform associated with the near-horizon physics. On the other hand, a coherent combine of a large number of pulses gives rise to a generic narrow resonance structure for the echo amplitude in frequency. The quasi-periodic resonance structure sets a complementary search target for echoes, and the time delay is inversely related to the average resonance spacing. A uniform comb has been proposed to look for the resonance structure in a rather model independent way. In this paper, we develop a Bayesian algorithm to search for the resonance structure based on combs, where a phase-marginalized likelihood plays an essential role. The algorithm is validated with signal injections in detector noise from Advanced LIGO. With special treatments of the non-Gaussian artifacts, the noise outliers of the log Bayes factor distribution are properly removed. An echo signal not significantly below noise is detectable, and the time delay can be determined to very high precision. We perform the proposed search on real gravitational wave strain data of the first observing run of Advanced LIGO. We find no clear evidence of a comb-like structure for GW150914 and GW151012.
Parity-violating (PV) gravity has recently attracted interest in several aspects. One of them is the axion-graviton coupling to test the axion-dark matter model. Moreover, by extending Chern-Simons (CS) gravity to include derivatives of a scalar field up to the second order, a more general class of PV gravity theory, which we call the CNCL model, has been proposed~[M. Crisostomi {it et al.}, Phys. Rev. D, {bf 97}, 044034 (2018)]. The model can be further extended by including even higher derivatives of the scalar field and/or higher curvature terms. In this paper, we discuss the effect of parity violation in the gravitational sector on the propagation of gravitational waves from binary coalescence by introducing a model-independent parametrization of modification. Our parametrization includes the CNCL model as well as CS gravity. The effect of parity violation on the gravitational waveform is maximum when the source binary orientation to our line of sight is edge-on, while the modified waveform reduces to the parity-symmetric one when the source is face-on. We perform a search for the signature of such modification by using the LIGO/Virgo O1/O2 catalog. We find that the catalog data is consistent with general relativity and obtain constraints on parity violation in gravity for various post-Newtonian order modifications for the first time. The obtained constraint on CS gravity is consistent with the results in previous works. On the other hand, the constraint on the CNCL model that we obtain is tighter than the previous results by roughly 7 orders of magnitude.
We perform a new test of general relativity (GR) with signals from GWTC-2, the LIGO and Virgo catalog of gravitational wave detections. We search for the presence of amplitude birefringence, in which left versus right circularly polarized modes of gravitational waves are exponentially enhanced and suppressed during propagation. Such an effect is present in various beyond-GR theories but is absent in GR. We constrain the amount of amplitude birefringence consistent with the data through an opacity parameter $kappa$, which we bound to be $kappa lesssim 0.74 textrm{ Gpc}^{-1}$. We then use these theory-agnostic results to constrain Chern-Simons gravity, a beyond-GR theory with motivations in quantum gravity. We bound the canonical Chern-Simons lengthscale to be $ell_0 lesssim 1.0 times 10^3$ km, improving on previous long-distance measurement results by a factor of two.
Exotic compact objects (ECOs) have recently become an exciting research subject, since they are speculated to have a special response to the incident gravitational waves (GWs) that leads to GW echoes. We show that energy carried by GWs can easily cause the event horizon to form out of a static ECO --- leaving no echo signals towards spatial infinity. To show this, we use the ingoing Vaidya spacetime and take into account the back reaction due to incoming GWs. Demanding that an ECO does not collapse into a black hole puts an upper bound on the compactness of the ECO, at the cost of less distinct echo signals for smaller compactness. The trade-off between echoes detectability and distinguishability leads to a fine tuning of ECO parameters for LIGO to find distinct echoes. We also show that an extremely compact ECO that can survive the gravitational collapse and give rise to GW echoes might have to expand its surface in a non-causal way.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا