In this article we study the presence of chaos in supersymmetric(SUSY) quantum mechanics. For that purpose we present a form of 4-point out of time order correlator(OTOC) for SUSY quantum mechanical systems using tensor product formalism. We calculate the 4-point OTOC for SUSY 1D harmonic oscillator and find that the OTOC is exactly equal to that of 1D bosonic harmonic oscillator system. In similar manner using the eigenstate representation of supersymmetric systems we calculate the generalized higher order out of time order correlator. The higher order OTOC is a more sensitive measure of chaos than the usual 4-point correlator used in literature. Finally, we calculate the generalized 2N-point OTOC for SUSY 1D harmonic oscillator.
The out-of-time-order correlator (OTOC) is considered as a measure of quantum chaos. We formulate how to calculate the OTOC for quantum mechanics with a general Hamiltonian. We demonstrate explicit calculations of OTOCs for a harmonic oscillator, a particle in a one-dimensional box, a circle billiard and stadium billiards. For the first two cases, OTOCs are periodic in time because of their commensurable energy spectra. For the circle and stadium billiards, they are not recursive but saturate to constant values which are linear in temperature. Although the stadium billiard is a typical example of the classical chaos, an expected exponential growth of the OTOC is not found. We also discuss the classical limit of the OTOC. Analysis of a time evolution of a wavepacket in a box shows that the OTOC can deviate from its classical value at a time much earlier than the Ehrenfest time.
Exponential growth of thermal out-of-time-order correlator (OTOC) is an indicator of a possible gravity dual, and a simple toy quantum model showing the growth is being looked for. We consider a system of two harmonic oscillators coupled nonlinearly with each other, and numerically observe that the thermal OTOC grows exponentially in time. The system is well-known to be classically chaotic, and is a reduction of Yang-Mills-Higgs theory. The exponential growth is certified because the growth exponent (quantum Lyapunov exponent) of the thermal OTOC is well matched with the classical Lyapunov exponent, including their energy/temperature dependence. Even in the presence of the exponential growth in the OTOC, the energy level spacings are not sufficient to judge a Wigner distribution, hence the OTOC is a better indicator of quantum chaos.
After recalling different formulations of the definition of supersymmetric quantum mechanics given in the literature, we discuss the relationships between them in order to provide an answer to the question raised in the title.
The non-relativistic quantum mechanics with a generalized uncertainty principle (GUP) is examined in $D$-dimensional free particle and harmonic oscillator systems. The Feynman propagators for these systems are exactly derived within the first order of the GUP parameter.
Out-of-time-order (OTO) operators have recently become popular diagnostics of quantum chaos in many-body systems. The usual way they are introduced is via a quantization of classical Lyapunov growth, which measures the divergence of classical trajectories in phase space due to the butterfly effect. However, it is not obvious how exactly they capture the sensitivity of a quantum system to its initial conditions beyond the classical limit. In this paper, we analyze sensitivity to initial conditions in the quantum regime by recasting OTO operators for many-body systems using various formulations of quantum mechanics. Notably, we utilize the Wigner phase space formulation to derive an $hbar$-expansion of the OTO operator for spatial degrees of freedom, and a large spin $1/s$-expansion for spin degrees of freedom. We find in each case that the leading term is the Lyapunov growth for the classical limit of the system and argue that quantum corrections become dominant at around the scrambling time, which is also when we expect the OTO operator to saturate. We also express the OTO operator in terms of propagators and see from a different point of view how it is a quantum generalization of the divergence of classical trajectories.
Rathindra Nath Das
,Sourav Dutta
,Archana Maji
.
(2020)
.
"Generalized out-of-time-order correlator in supersymmetric quantum mechanics using tensor product formalism"
.
Rathindra Nath Das Mr.
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا