Do you want to publish a course? Click here

An Aggregation-based Nonlinear Multigrid Solver for Two-phase Flow and Transport in Porous Media

182   0   0.0 ( 0 )
 Added by Chak Shing Lee
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

A nonlinear multigrid solver for two-phase flow and transport in a mixed fractional-flow velocity-pressure-saturation formulation is proposed. The solver, which is under the framework of the full approximation scheme (FAS), extends our previous work on nonlinear multigrid for heterogeneous diffusion problems. The coarse spaces in the multigrid hierarchy are constructed by first aggregating degrees of freedom, and then solving some local flow problems. The mixed formulation and the choice of coarse spaces allow us to assemble the coarse problems without visiting finer levels during the solving phase, which is crucial for the scalability of multigrid methods. Specifically, a natural generalization of the upwind flux can be evaluated directly on coarse levels using the precomputed coarse flux basis vectors. The resulting solver is applicable to problems discretized on general unstructured grids. The performance of the proposed nonlinear multigrid solver in comparison with the standard single level Newtons method is demonstrated through challenging numerical examples. It is observed that the proposed solver is robust for highly nonlinear problems and clearly outperforms Newtons method in the case of high Courant-Friedrichs-Lewy (CFL) numbers.



rate research

Read More

We study several iterative methods for fully coupled flow and reactive transport in porous media. The resulting mathematical model is a coupled, nonlinear evolution system. The flow model component builds on the Richards equation, modified to incorporate nonstandard effects like dynamic capillarity and hysteresis, and a reactive transport equation for the solute. The two model components are strongly coupled. On one hand, the flow affects the concentration of the solute; on the other hand, the surface tension is a function of the solute, which impacts the capillary pressure and, consequently, the flow. After applying an Euler implicit scheme, we consider a set of iterative linearization schemes to solve the resulting nonlinear equations, including both monolithic and two splitting strategies. The latter include a canonical nonlinear splitting and an alternate linearized splitting, which appears to be overall faster in terms of numbers of iterations, based on our numerical studies. The (time discrete) system being nonlinear, we investigate different linearization methods. We consider the linearly convergent L-scheme, which converges unconditionally, and the Newton method, converging quadratically but subject to restrictions on the initial guess. Whenever hysteresis effects are included, the Newton method fails to converge. The L-scheme converges; nevertheless, it may require many iterations. This aspect is improved by using the Anderson acceleration. A thorough comparison of the different solving strategies is presented in five numerical examples, implemented in MRST, a toolbox based on MATLAB.
In this work we consider the transport of a surfactant in a variably saturated porous media. The water flow is modelled by the Richards equations and it is fully coupled with the transport equation for the surfactant. Three linearization techniques are discussed: the Newton method, the modified Picard and the L-scheme. Based on these, monolithic and splitting schemes are proposed and their convergence is analyzed. The performance of these schemes is illustrated on four numerical examples. For these examples, the number of iterations and the condition numbers of the linear systems emerging in each iteration are presented.
In this paper, we study a model for the transport of an external component, e.g., a surfactant, in variably saturated porous media. We discretize the model in time and space by combining a backward Euler method with the linear Galerkin finite elements. The Newton method and the L-Scheme are employed for the linearization and the performance of these schemes is studied numerically. A special focus is set on the effects of dynamic capillarity on the transport equation.
In this article, we present new random walk methods to solve flow and transport problems in unsaturated/saturated porous media, including coupled flow and transport processes in soils, heterogeneous systems modeled through random hydraulic conductivity and recharge fields, processes at the field and regional scales. The numerical schemes are based on global random walk algorithms (GRW) which approximate the solution by moving large numbers of computational particles on regular lattices according to specific random walk rules. To cope with the nonlinearity and the degeneracy of the Richards equation and of the coupled system, we implemented the GRW algorithms by employing linearization techniques similar to the $L$-scheme developed in finite element/volume approaches. The resulting GRW $L$-schemes converge with the number of iterations and provide numerical solutions that are first-order accurate in time and second-order in space. A remarkable property of the flow and transport GRW solutions is that they are practically free of numerical diffusion. The GRW solutions are validated by comparisons with mixed finite element and finite volume solutions in one- and two-dimensional benchmark problems. They include Richards equation fully coupled with the advection-diffusion-reaction equation and capture the transition from unsaturated to saturated flow regimes. For completeness, we also consider decoupled flow and transport model problems for saturated aquifers.
In this paper, we propose an enriched Galerkin (EG) approximation for a two-phase pressure saturation system with capillary pressure in heterogeneous porous media. The EG methods are locally conservative, have fewer degrees of freedom compared to discontinuous Galerkin (DG), and have an efficient pressure solver. To avoid non-physical oscillations, an entropy viscosity stabilization method is employed for high order saturation approximations. Entropy residuals are applied for dynamic mesh adaptivity to reduce the computational cost for larger computational domains. The iterative and sequential IMplicit Pressure and Explicit Saturation (IMPES) algorithms are treated in time. Numerical examples with different relative permeabilities and capillary pressures are included to verify and to demonstrate the capabilities of EG.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا