Do you want to publish a course? Click here

Two Candidate High-Redshift X-ray Jets Without Coincident Radio Jets

85   0   0.0 ( 0 )
 Added by Daniel A. Schwartz
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the detection of extended X-ray emission from two high-redshift radio quasars. These quasars, J1405+0415 at $z$=3.208 and J1610+1811 at $z$=3.118, were observed in a Chandra snapshot survey selected from a complete sample of the radio-brightest quasars in the overlap area of the VLA-FIRST radio survey and the Sloan Digital Sky Survey. The extended X-ray emission is located along the line connecting the core to a radio knot or hotspot, favoring the interpretation of X-ray jets. The inferred rest frame jet X-ray luminosities from 2--30 keV would be of order 10$^{45}$ erg~s$^{-1}$ if emitted isotropically and without relativistic beaming. In the scenario of inverse Compton scattering of the cosmic microwave background (CMB), X-ray jets without a coincident radio counterpart may be common, and should be readily detectable to redshifts even beyond 3.2 due to the (1+$z$)$^4$ increase of the CMB energy density compensating for the (1+$z$)$^{-4}$ cosmological diminution of surface brightness. If these can be X-ray confirmed, they would be the second and third examples of quasar X-ray jets without detection of underlying continuous radio jets.



rate research

Read More

We present Chandra X-ray observations of 14 radio-loud quasars at redshifts $3 < z < 4$, selected from a well-defined sample. All quasars are detected in the 0.5-7.0 keV energy band, and resolved X-ray features are detected in five of the objects at distances of 1-12 from the quasar core. The X-ray features are spatially coincident with known radio features for four of the five quasars. This indicates that these systems contain X-ray jets. X-ray fluxes and luminosities are measured, and jet-to-core X-ray flux ratios are estimated. The flux ratios are consistent with those observed for nearby jet systems, suggesting that the observed X-ray emission mechanism is independent of redshift. For quasars with undetected jets, an upper limit on the average X-ray jet intensity is estimated using a stacked image analysis. Emission spectra of the quasar cores are extracted and modeled to obtain best-fit photon indices, and an Fe K emission line is detected from one quasar in our sample. We compare X-ray spectral properties with optical and radio emission in the context of both our sample and other quasar surveys.
Powerful radio sources and quasars emit relativistic jets of plasma and magnetic fields that travel hundreds of kilo-parsecs, ultimately depositing energy into the intra- or inter-cluster medium. In the rest frame of the jet, the energy density of the cosmic microwave background is enhanced by the bulk Lorentz factor squared, and when this exceeds the magnetic energy density the primary loss mechanism of the relativistic electrons is via inverse Compton scattering. The microwave energy density is also enhanced by a factor (1+z)^4, which becomes important at large redshifts. We are using Chandra to survey a z>3 sub-sample of radio sources selected with 21 cm wavelength flux density > 70 mJy, and with a spectroscopic redshift. Out of the first 12 objects observed, there are two clear cases of the X-rays extending beyond the detectable radio jet.
We have completed a Chandra snapshot survey of 54 radio jets that are extended on arcsec scales. These are associated with flat spectrum radio quasars spanning a redshift range z=0.3 to 2.1. X-ray emission is detected from the jet of approximately 60% of the sample objects. We assume minimum energy and apply conditions consistent with the original Felten-Morrison calculations in order to estimate the Lorentz factors and the apparent Doppler factors. This allows estimates of the enthalpy fluxes, which turn out to be comparable to the radiative luminosities.
We investigate the polarization properties of Comptonized X-rays from relativistic jets in Active Galactic Nuclei (AGN) using Monte Carlo simulations. We consider three scenarios commonly proposed for the observed X-ray emission in AGN: Compton scattering of blackbody photons emitted from an accretion disk; scattering of cosmic microwave background (CMB) photons; and self-Comptonization of intrinsically polarized synchrotron photons emitted by jet electrons. Our simulations show that for Comptonization of disk and CMB photons, the degree of polarization of the scattered photons increases with the viewing inclination angle with respect to the jet axis. In both cases the maximum linear polarization is approximately 20%. In the case of synchrotron self-Comptonization (SSC), we find that the resulting X-ray polarization depends strongly on the seed synchrotron photon injection site, with typical fractional polarizations of approximately P = 10 - 20% when synchrotron emission is localized near the jet base, while P = 20 - 70% for the case of uniform emission throughout the jet. These results indicate that X-ray polarimetry may be capable of providing unique clues to identify the location of particle acceleration sites in relativistic jets. In particular, if synchrotron photons are emitted quasi-uniformly throughout a jet, then the observed degree of X-ray polarization may be sufficiently different for each of the competing X-ray emission mechanisms (synchrotron, SSC or external Comptonization) to determine which is the dominant process. However, X-ray polarimetry alone is unlikely to be able to distinguish between disk and CMB Comptonization.
117 - M. Orienti 2015
Relativistic jets are one of the most powerful manifestations of the release of energy related to the supermassive black holes at the centre of active galactic nuclei (AGN). Their emission is observed across the entire electromagnetic spectrum, from the radio band to gamma rays. Despite decades of efforts, many aspects of the physics of relativistic jets remain elusive. In particular, the location and the mechanisms responsible for the high-energy emission and the connection of the variability at different wavelengths are among the greatest challenges in the study of AGN. Recent high resolution radio observations of flaring objects locate the high-energy emitting region downstream the jet at parsec scale distance from the central engine, posing questions on the nature of the seed photons upscattered to gamma-rays. Furthermore, monitoring campaigns of the most active blazars indicate that not all the high energy flares have the same characteristics in the various energy bands, even from the same source, making the interpretation of the mechanism responsible for the high-energy emission not trivial. Although the variability of the most luminous blazars is well explained by the shock-in-jet scenario, the sub-class of TeV emitting objects suggests a more complex emission model with velocity gradients in a structured jet. This contribution presents results obtained by recent multiwavelength campaigns of blazars aimed at studying the radio and gamma-ray connection and the physical mechanisms at the basis of the emission in these low and high energy bands.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا