No Arabic abstract
Models in systems biology are mathematical descriptions of biological processes that are used to answer questions and gain a better understanding of biological phenomena. Dynamic models represent the network through rates of the production and consumption for the individual species. The ordinary differential equations that describe rates of the reactions in the model include a set of parameters. The parameters are important quantities to understand and analyze biological systems. Moreover, the perturbation of the kinetic parameters are correlated with upregulation of the system by cell-intrinsic and cell-extrinsic factors, including mutations and the environment changes. Here, we aim at using well-established models of biological pathways to identify parameter values and point their potential perturbation/deviation. We present our population-based optimization framework that is able to identify kinetic parameters in the dynamic model based on only input and output data (i.e., timecourses of selected metabolites). Our approach can deal with the identification of the non-measurable parameters as well as with discovering deviation of the parameters. We present our proposed optimization framework on the example of the well-studied glycolytic pathway in Saccharomyces cerevisiae.
This paper has been withdrawn.
The use of black-box optimization for the design of new biological sequences is an emerging research area with potentially revolutionary impact. The cost and latency of wet-lab experiments requires methods that find good sequences in few experimental rounds of large batches of sequences--a setting that off-the-shelf black-box optimization methods are ill-equipped to handle. We find that the performance of existing methods varies drastically across optimization tasks, posing a significant obstacle to real-world applications. To improve robustness, we propose Population-Based Black-Box Optimization (P3BO), which generates batches of sequences by sampling from an ensemble of methods. The number of sequences sampled from any method is proportional to the quality of sequences it previously proposed, allowing P3BO to combine the strengths of individual methods while hedging against their innate brittleness. Adapting the hyper-parameters of each of the methods online using evolutionary optimization further improves performance. Through extensive experiments on in-silico optimization tasks, we show that P3BO outperforms any single method in its population, proposing higher quality sequences as well as more diverse batches. As such, P3BO and Adaptive-P3BO are a crucial step towards deploying ML to real-world sequence design.
Results of Positron Annihilation Lifetime Spectroscopy (PALS) and microscopic studies on simple microorganisms: brewing yeasts are presented. Lifetime of ortho - positronium (o-Ps) were found to change from 2.4 to 2.9 ns (longer lived component) for lyophilised and aqueous yeasts, respectively. Also hygroscopicity of yeasts in time was examined, allowing to check how water - the main component of the cell - affects PALS parameters, thus lifetime of o-Ps were found to change from 1.2 to 1.4 ns (shorter lived component) for the dried yeasts. The time sufficient to hydrate the cells was found below 10 hours. In the presence of liquid water an indication of reorganization of yeast in the molecular scale was observed. Microscopic images of the lyophilised, dried and wet yeasts with best possible resolution were obtained using Inverted Microscopy (IM) and Environmental Scanning Electron Microscopy (ESEM) methods. As a result visible changes to the surface of the cell membrane were observed in ESEM images.
Time-series of high throughput gene sequencing data intended for gene regulatory network (GRN) inference are often short due to the high costs of sampling cell systems. Moreover, experimentalists lack a set of quantitative guidelines that prescribe the minimal number of samples required to infer a reliable GRN model. We study the temporal resolution of data vs quality of GRN inference in order to ultimately overcome this deficit. The evolution of a Markovian jump process model for the Ras/cAMP/PKA pathway of proteins and metabolites in the G1 phase of the Saccharomyces cerevisiae cell cycle is sampled at a number of different rates. For each time-series we infer a linear regression model of the GRN using the LASSO method. The inferred network topology is evaluated in terms of the area under the precision-recall curve AUPR. By plotting the AUPR against the number of samples, we show that the trade-off has a, roughly speaking, sigmoid shape. An optimal number of samples corresponds to values on the ridge of the sigmoid.
To support and guide an extensive experimental research into systems biology of signaling pathways, increasingly more mechanistic models are being developed with hopes of gaining further insight into biological processes. In order to analyse these models, computational and statistical techniques are needed to estimate the unknown kinetic parameters. This chapter reviews methods from frequentist and Bayesian statistics for estimation of parameters and for choosing which model is best for modeling the underlying system. Approximate Bayesian Computation (ABC) techniques are introduced and employed to explore different hypothesis about the JAK-STAT signaling pathway.