Do you want to publish a course? Click here

On the separation between RR Lyrae and Type II Cepheids and their importance for distance determination: the case of $omega$ Cen

95   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The separation between RR Lyrae (RRLs) and Type II Cepheid (T2Cs) variables based on their period is debated. Both types of variable stars are distance indicators and we aim to promote the use of T2Cs as distance indicators in synergy with RRLs. We adopted new and existing optical and Near-Infrared (NIR) photometry of wcen~to investigate several diagnostics (colour-magnitude diagram, Bailey diagram, Fourier decomposition of the light curve, amplitude ratios) for their empirical separation. We found that the classical period threshold at 1 day is not universal and does not dictate the evolutionary stage: V92 has a period of 1.3 days but is likely to be still in its core Helium-burning phase, typical of RRLs. We also derived NIR Period-Luminosity relations and found a distance modulus of 13.65$pm$0.07 (err.)$pm$0.01 ($sigma$) mag, in agreement with the recent literature. We also found that RRLs and T2Cs obey the same PL relations in the NIR. This equivalence gives the opportunity to adopt RRLs+T2Cs as an alternative to classical Cepheids to calibrate the extragalactic distance scale.



rate research

Read More

139 - Horace A. Smith 2013
Mira variables, RR Lyrae variables, and type II Cepheids all represent evolved states of low-mass stars, and long term observations have revealed that changes in pulsation period occur for each of these classes of variable. Most Mira variables show small or no period changes, but a few show large period changes that can plausibly be associated with thermal pulses on the asymptotic red giant branch. Individual RR Lyrae stars show period changes that do not accord with the predictions of stellar evolution theory. This may be especially true for RR Lyrae stars that exhibit the Blazhko effect. However, the average period changes of all of the RR Lyrae variables within a globular cluster prove a better but still imperfect match for the predictions of evolutionary theory. The observed period changes of short period type II Cepheids (BL Her stars) as well as those of long period type II Cepheids (W Vir stars) are in broad agreement with the rates of period changes expected from their evolutionary motions through the instability strip.
We present new sets of nonlinear, time-dependent convective hydrodynamical models of RR Lyrae stars assuming two metal (Z=0.0005, Z=0.001) and three helium abundances (Y=0.24, 0.30, 0.38). For each chemical composition we constructed a grid of fundamental (FU) and first overtone (FO) models covering a broad range of stellar masses and luminosities. To constrain the impact of the helium content on RR Lyrae properties, we adopted two observables --period distribution, luminosity amplitudes-- that are independent of distance and reddening. The current predictions confirm that the helium content has a marginal effect on the pulsation properties. The key parameter causing the difference between canonical and He-enhanced observables is the luminosity. We compared current predictions with the sample of 189 RR Lyrae stars in omega Cen and we found that the period range of He-enhanced models is systematically longer than observed. These findings apply to metal-poor and metal-intermediate He-enhanced models. To further constrain the impact of He-enhanced structures on the period distribution we also computed a series of synthetic HB models and we found that the predicted period distribution, based on a Gaussian sampling in mass, agrees quite well with observations. This applies not only to the minimum fundamentalized period of RR Lyrae stars (0.39 vs 0.34 day), but also to the fraction of Type II Cepheids (2% vs 3%). We also computed a series of synthetic HB models assuming a mixed HB population in which the 80% is made of canonical HB structures, while the 20% is made of He-enhanced (Y=0.30) HB structures. We found that the fraction of Type II Cepheids predicted by these models is almost a factor of two larger than observed (5% vs 3%). This indicates that the fraction of He-enhanced structures in omega Cen cannot be larger than 20%.
81 - Z. Prudil , M. Hanke , B. Lemasle 2021
We present a chemo-dynamical study of the Orphan stellar stream using a catalog of RR~Lyrae pulsating variable stars for which photometric, astrometric, and spectroscopic data are available. Employing low-resolution spectra from the Sloan Digital Sky Survey (SDSS), we determined line-of-sight velocities for individual exposures and derived the systemic velocities of the RR~Lyrae stars. In combination with the stars spectroscopic metallicities and textit{Gaia} EDR3 astrometry, we investigated the northern part of the Orphan stream. In our probabilistic approach, we found 20 single mode RR~Lyrae variables likely associated with the Orphan stream based on their positions, proper motions, and distances. The acquired sample permitted us to expand our search to nonvariable stars in the SDSS dataset, utilizing line-of-sight velocities determined by the SDSS. We found 54 additional nonvariable stars linked to the Orphan stream. The metallicity distribution for the identified red giant branch stars and blue horizontal branch stars is, on average, $-2.13pm0.05$ dex and $-1.87pm0.14$ dex, with dispersions of 0.23 and 0.43dex, respectively. The metallicity distribution of the RR~Lyrae variables peaks at $-1.80pm0.06$ dex and a dispersion of 0.25dex. Using the collected stellar sample, we investigated a possible link between the ultra-faint dwarf galaxy Grus II and the Orphan stream. Based on their kinematics, we found that both the stream RR~Lyrae and Grus II are on a prograde orbit with similar orbital properties, although the large uncertainties on the dynamical properties render an unambiguous claim of connection difficult. At the same time, the chemical analysis strongly weakens the connection between both. We argue that Grus II in combination with the Orphan stream would have to exhibit a strong inverse metallicity gradient, which to date has not been detected in any Local Group system.
157 - R. Szabo 2013
The Blazhko effect is the conspicuous amplitude and phase modulation of the pulsation of RR Lyrae stars that was discovered in the early 20th century. The field of study of this mysterious modulation has recently been invigorated thanks to the space photometric missions providing long, uninterrupted, ultra-precise time series data. In this paper I give a brief overview of the new observational findings related to the Blazhko effect, like extreme modulations, irregular modulation cycles and additional periodicities. I argue that these findings together with dedicated ground-based efforts now provide us with a fairly complete picture and a good starting point to theoretical investigations. Indeed, new, unpredicted dynamical phenomena have been discovered in Blazhko RR Lyrae stars, such as period doubling, high-order resonances, three-mode pulsation and low-dimensional chaos. These led to the proposal of a new explanation to this century-old enigma, namely a high-order resonance between radial modes. Along these lines I present the latest efforts and advances from the theoretical point of view. Lastly, amplitude variations in Cepheids are discussed.
79 - D. Magurno 2019
We present a detailed spectroscopic analysis of RR Lyrae (RRL) variables in the globular cluster NGC 5139 (omega Cen). We collected optical (4580-5330 A), high resolution (R = 34,000), high signal-to-noise ratio (200) spectra for 113 RRLs with the multi-fiber spectrograph M2FS at the Magellan/Clay Telescope at Las Campanas Observatory. We also analysed high resolution (R = 26,000) spectra for 122 RRLs collected with FLAMES/GIRAFFE at the VLT, available in the ESO archive. The current sample doubles the literature abundances of cluster and field RRLs in the Milky Way based on high resolution spectra. Equivalent width measurements were used to estimate atmospheric parameters, iron, and abundance ratios for alpha (Mg, Ca, Ti), iron peak (Sc, Cr, Ni, Zn), and s-process (Y) elements. We confirm that omega Cen is a complex cluster, characterised by a large spread in the iron content: -2.58 < [Fe/H] < -0.85. We estimated the average cluster abundance as [Fe/H] = -1.80 +- 0.03, with sigma = 0.33 dex. Our findings also suggest that two different RRL populations coexist in the cluster. The former is more metal-poor ([Fe/H] < -1.5), with almost solar abundance of Y. The latter is less numerous, more metal-rich, and yttrium enhanced ([Y/Fe] > 0.4). This peculiar bimodal enrichment only shows up in the s-process element, and it is not observed among lighter elements, whose [X/Fe] ratios are typical for Galactic globular clusters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا