No Arabic abstract
The magnetic phase diagram in the H-T coordinates has been determined for {sigma}-Fe68V32 from the ZFC/FC magnetization measurements. The re-entrant character of magnetism, going from paramagnetic through ferromagnetic to spin-glass (SG) states, has been evidenced. The SG phase is magnetically heterogeneous, because two sub phases can be identified i.e. with the strong (SG-SI) and the weak (SG-WI) irreversibility. The ireversibility, T_irr and the crossover, T_cros, temperatures were quantitatively analysed using the mean-field theory and {phi}_irr=1.6(2) and {phi}_cros=0.91(9) values were obtained. A qualitative agreement with the Gabay-Toulouse model was reached. The isothermal magnetization measurements point to a soft magnetic behaviour of the studied sample. The {gamma} critical exponent was determined with the Kouvel-Fisher approach yielding the value of {gamma}=1.0(1) in line with the mean-field theory.
In-field DC and AC magnetization measurements were carried out on a sigma-phase Fe55Re45 intermetallic compound aimed at determination of the magnetic phase diagram in the H-T plane. Field cooled, M_FC, and zero-field cooled, M_ZFC, DC magnetization curves were measured in the magnetic field, H, up to 1200 Oe. AC magnetic susceptibility measurements were carried out at a constant frequency of 1465 Hz under DC fields up to H=500 Oe. The obtained results provide evidences for re-entrant magnetism in the investigated sample. The magnetic phase diagrams in the H-T plane have been outlined based on characteristic temperatures determined from the DC and AC measurements. The phase diagrams are similar yet not identical. The main difference is that in the DC diagram constructed there are two cross-over transitions within the strong-irreversibility spin-glass state, whereas in the AC susceptibility based diagram only one transition is observed. The border lines (irreversibility, cross-over) can be described in terms of the power laws.
A low-temperature magnetism was revealed in a series of sigma-Fe(100-x)Mo(x) alloys (x=45-53). Its characterization has been done using vibrating sample magnetometry, Mossbauer spectroscopy, and ac magnetic susceptibility. The magnetic ordering temperature was determined to lie in the range of 46 K for x=45 and 22K for x=53, and the ground magnetic state was found to be typical of a spin-glass.
Systematic experimental (vibrating sample magnetometry) and theoretical (electronic structure calculations using charge and spin self-consistent Korringa-Kohn-Rostoker Green function method) studies were performed on a series of intermetallic sigma-phase Fe(100-x)Re(x) (x = 43-53) compounds. Clear evidence was found that all investigated samples exhibit magnetism with an ordering temperature ranging between 65 K for x = 43 and 23 K for x = 53. The magnetism was revealed to be itinerant and identified as a spin-glass (SG) possibly having a re-entrant character. The SG was found to be heterogeneous viz. two regimes could be distinguished as far as irreversibility in temperature dependence of magnetization is concerned: (1) of a weak irreversibility and (2) of a strong one. According to the theoretical calculations the main contribution to the magnetism comes from Fe atoms occupying all five sub lattices. Re atoms have rather small moments. However, the calculated average magnetic moments are highly (ferromagnetic ordering model) or moderately (antiparallel ordering model) overestimated relative to the experimental data.
Magnetic properties of a sigma-phase Fe60V40 intermetallic compound were studied by means of ac and dc magnetic susceptibility and magnetocaloric effect measurements. The compound is a soft magnet yet it was found to behave like a re-entrant spin-glass system. The magnetic ordering temperature was found to be T_C ca.170 K, while the spin-freezing temperature was ca.164 K. Its relative shift per decade of ac frequency was 0.002, a value smaller than that typical of canonical spin-glasses. Magnetic entropy change, DeltaS, in the vicinity of T_C was determined for magnetic field, H, ranging between 5 and 50 kOe. Analysis of DeltaS in terms of the power law yielded the critical exponent, n, vs. temperature with the minimum value of 0.75 at T_C, while from the analysis of a relative shift of the maximum value of DeltaS with the field a critical exponent Delta=1.7 was obtained. Based on scaling laws relationships values of other two exponents viz. betha=0.6 and gamma=1 were determined.
A C14 Nb0.975Fe2.025 Laves phase compound was investigated aimed at determining the H-T magnetic phase diagram. Magnetization, M, and AC magnetic susceptibility measurements were performed. Concerning the former field-cooled and zero-field-cooled M-curves were recorded in the temperature range of 2-200K and in applied magnetic field, H, up to 1000 Oe, isothermal M(H) curves at 2 K, 5 K, 50 K, 80 K and 110 K as well as hysteresis loops at several temperatures over the field range of -10 to +10kOe. Regarding the AC susceptibility, both real and imaginary components were registered as a function of increasing temperature in the interval of 2 K - 150 K at the frequencies of the oscillating field, f, from 3 Hz up to 999 Hz. An influence of the external DC magnetic field, H, on the temperature dependence of the AC susceptibility was investigated, too. The measurements clearly demonstrated that the magnetism of the studied sample is weak, itinerant and has a reentrant character. Based on the obtained results a magnetic phase diagram has been constructed in the H-T coordinates.