No Arabic abstract
Consider at a finite temperature T a superfluid moving with a velocity v relative to the thermal bath or its normal component. From Landaus argument there exists a critical v_c (T) beyond which excitations can be spontaneously generated and the system becomes unstable. Identifying the final state induced by such an instability has been an outstanding open question. Using holographic duality we perform dynamical simulations of evolutions from initial unstable states, and find that the system settles to a homogenous superfluid state with a final velocity below the critical velocity. The dynamical evolution process appears to be highly chaotic, exhibiting transient turbulence. Nevertheless we are able to identify from the simulations a universal physical mechanism for the reduction of superfluid velocity, in terms of spontaneous nucleation of solitons. We also derive a simple analytic formula which relates the final velocity to the number of solitons nucleated during the evolution.
We study the critical $O(3)$ model using the numerical conformal bootstrap. In particular, we use a recently developed cutting-surface algorithm to efficiently map out the allowed space of CFT data from correlators involving the leading $O(3)$ singlet $s$, vector $phi$, and rank-2 symmetric tensor $t$. We determine their scaling dimensions to be $(Delta_{s}, Delta_{phi}, Delta_{t}) = (0.518942(51), 1.59489(59), 1.20954(23))$, and also bound various OPE coefficients. We additionally introduce a new ``tip-finding algorithm to compute an upper bound on the leading rank-4 symmetric tensor $t_4$, which we find to be relevant with $Delta_{t_4} < 2.99056$. The conformal bootstrap thus provides a numerical proof that systems described by the critical $O(3)$ model, such as classical Heisenberg ferromagnets at the Curie transition, are unstable to cubic anisotropy.
We study attractively interacting spin-1/2 fermions on the square lattice subject to a spin population imbalance. Using unbiased diagrammatic Monte Carlo simulations we find an extended region in the parameter space where the Fermi liquid is unstable towards formation of Cooper pairs with non-zero center-of-mass momentum, known as the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. In contrast to earlier mean-field and quasi-classical studies we provide quantitative and well-controlled predictions on the existence and location of the relevant Fermi-liquid instabilities. The highest temperature where the FFLO instability can be observed is about half of the superfluid transition temperature in the unpolarized system.
By holographic duality, we identify a novel dynamical phase transition which results from the temperature dependence of non-equilibrium dynamics of dark solitons in a superfluid.For a non-equilibrium superfluid system with an initial density of dark solitons, there exists a critical temperature $T_d$,above which the system relaxes to equilibrium by producing sound waves, while below which it goes through an intermediate phase with a finite density of vortex-antivortex pairs. In particular, as $T_d$ is approached from below, the density of vortex pairs scales as $(T_d - T)^gamma$ with the critical exponent $gamma = 1/2$.
We study the concomitant breaking of spatial translations and dilatations in Ginzburg-Landau-like models, where the dynamics responsible for the symmetry breaking is described by an effective Mexican hat potential for spatial gradients. We show that there are fractonic modes with either subdimensional propagation or no propagation altogether, namely, immobility. Such class of effective field theories encompasses instances of helical superfluids and meta-fluids, where fractons can be connected to an emergent symmetry under higher moment charges, leading in turns to the trivialization of some elastic coefficients. The introduction of a finite charge density alters the mobility properties of fractons and leads to a competition between the chemical potential and the superfluid velocity in determining the gap of the dilaton. The mobility of fractons can also be altered at zero density upon considering additional higher-derivative terms.
We study the hydrodynamic excitations of backreacted holographic superfluids by computing the full set of quasinormal modes (QNMs) at finite momentum and matching them to the existing hydrodynamic theory of superfluids. Additionally, we analyze the behavior of the low-energy excitations in real frequency and complex momentum, going beyond the standard QNM picture. Finally, we carry out a novel type of study of the model by computing the support of the hydrodynamic modes across the phase diagram. We achieve this by determining the support of the corresponding QNMs on the different operators in the dual theory, both in complex frequency and complex momentum space. From the support, we are able to reconstruct the hydrodynamic dispersion relations using the hydrodynamic constitutive relations. Our analysis rules out a role-reversal phenomenon between first and second sound in this model, contrary to results obtained in a weakly coupled field theory framework.