Do you want to publish a course? Click here

Surface and curvature properties of charged strangelets in compact objects

90   0   0.0 ( 0 )
 Added by German Lugones
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Droplets of absolutely stable strange quark matter (strangelets) immersed in a lepton background may be the energetically preferred composition of strange star crusts and of the interior of a new class of stars known as strangelet dwarfs. In this work we calculate the surface tension $sigma$ and the curvature coefficient $gamma$ of charged strangelets as a function of the baryon number density, the temperature, the chemical potential of trapped neutrinos, the strangelet size, the electric potential and the electric charge at their boundary. Strange quark matter in chemical equilibrium and with global electric charge neutrality is described within the MIT bag model. We focus on three different astrophysical scenarios, namely cold strange stars, proto strange stars and post merger strange stars. Finite size effects are implemented within the multiple reflection expansion framework. We find that $sigma$ decreases significantly as the strangelets boundary becomes more positively charged. This occurs because $sigma$ is dominated by the contribution of $s$ quarks which are the most massive particles in the system. Negatively charged $s$-quarks are suppressed in strangelets with a large positive electric charge, diminishing their contribution to $sigma$ and resulting in smaller values of the total $sigma$. We verify that the more extreme astrophysical scenarios, with higher temperatures and higher neutrino chemical potentials, allow higher positive values of the strangelets electric charge at the boundary and consequently smaller values of $sigma$. In contrast, $gamma$ is strongly dominated by the density of light ($u$ and $d$) quarks and is quite independent of the charge-per-baryon ratio, the temperature and neutrino trapping. We discuss the relative importance of surface and curvature effects as well as some astrophysical consequences of these results.



rate research

Read More

We investigate the stability and $e^+e^-$ pair creation of supercritically charged superheavy nuclei, $ud$QM nuggets, strangelets, and strangeon nuggets based on Thomas-Fermi approximation. The model parameters are fixed by reproducing their masses and charge properties reported in earlier publications. It is found that $ud$QM nuggets, strangelets, and strangeon nuggets may be more stable than ${}^{56}$Fe at $Agtrsim 315$, $5times10^4$, and $1.2times10^8$, respectively. For those stable against neutron emission, the most massive superheavy element has a baryon number $sim$965, while $ud$QM nuggets, strangelets, and strangeon nuggets need to have baryon numbers larger than $39$, 433, and $2.7times10^5$. The $e^+e^-$ pair creation will inevitably start for superheavy nuclei with charge numbers $Zgeq177$, $ud$QM nuggets with $Zgeq163$, strangelets with $Zgeq 192$, and strangeon nuggets with $Zgeq 212$. A universal relation $Q/R_e = left(m_e - bar{mu}_eright)/alpha$ is obtained at a given electron chemical potential $bar{mu}_e$, where $Q$ is the total charge and $R_e$ the radius of electron cloud. This predicts the maximum charge number by taking $bar{mu}_e=-m_e$. For supercritically charged objects with $bar{mu}_e<-m_e$, the decay rate for $e^+e^-$ pair production is estimated based on the JWKB approximation. It is found that most positrons are emitted at $tlesssim 10^{-15}$ s, while a long lasting positron emission is observed for large objects with $Rgtrsim 1000$ fm. The emission and annihilation of positrons from supercritically charged objects may be partially responsible for the short $gamma$-ray burst during the merger of binary compact stars, the 511 keV continuum emission, as well as the narrow faint emission lines in X-ray spectra from galaxies and galaxy clusters.
We study the impact of the fermion vacuum term in the SU(3) quark meson model on the equation of state and determine the vacuum parameters for various sigma meson masses. We examine its influence on the equation of state and on the resulting mass radius relations for compact stars. The tidal deformability $Lambda$ of the stars is studied and compared to the results of the mean field approximation. Parameter sets which fulfill the tidal deformability bounds of GW170817 together with the observed two solar mass limit turn out to be restricted to a quite small parameter range in the mean field approximation. The extended version of the model does not yield solutions fulfilling both constraints. Furthermore, no first order chiral phase transition is found in the extended version of the model, not allowing for the twin star solutions found in the mean field approximation.
Short range particle repulsion is rather important property of the hadronic and nuclear matter equations of state. We present a novel equation of state which is based on the virial expansion for the multicomponent mixtures with hard-core repulsion. In addition to the hard-core repulsion taken into account by the proper volumes of particles, this equation of state explicitly contains the surface tension which is induced by another part of the hard-core repulsion between particles. At high densities the induced surface tension vanishes and the excluded volume treatment of hard-core repulsion is switched to its proper volume treatment. Possible applications of this equation of state to a description of hadronic multiplicities measured in A+A collisions, to an investigation of the nuclear matter phase diagram properties and to the neutron star interior modeling are discussed.
112 - Yong-Liang Ma , Mannque Rho 2020
We review the recent exploration of a possible domain-wall structure of compressed baryonic matter in massive compact stars in terms of fractional quantum Hall droplets and skyrmions for baryons in medium. The theoretical framework is anchored on an effective nuclear effective field theory that incorporates two hidden symmetries, flavor local symmetry and scale symmetry conjectured to be dual to the gluons and quarks of QCD. It hints at a basically different, hitherto undiscovered structure of nuclear matter at low as well as high densities. Hidden genuine dilaton (GD) symmetry and hidden local symmetry (HLS) gauge-equivalent at low density to nonlinear sigma model capturing chiral symmetry, put together in nuclear effective field theory, are seen to play an increasingly important role in providing hadron-quark duality in baryonic matter. This strongly motivates incorporating both symmetries in formulating first-principles approaches to nuclear dynamics encompassing from the nuclear matter density to the highest density stable in the Universe.
Topology effects have being extensively studied and confirmed in strongly correlated condensed matter physics. In the large color number limit of QCD, baryons can be regarded as topological objects -- skyrmions -- and the baryonic matter can be regarded as a skyrmion matter. We review in this paper the generalized effective field theory for dense compact-star matter constructed with the robust inputs obtained from the skyrmion approach to dense nuclear matter, relying to possible ``emergent scale and local flavor symmetries at high density. All nuclear matter properties from the saturation density $n_0$ up to several times $n_0$ can be fairly well described. A uniquely novel -- and unorthdox -- feature of this theory is the precocious appearance of the pseudo-conformal sound velocity $v^2_{s}/c^2 approx 1/3$, with the non-vanishing trace of the energy momentum tensor of the system. The topology change encoded in the density scaling of low energy constants is interpreted as the quark-hadron continuity in the sense of Cheshire Cat Principle (CCP) at density $gsim 2n_0$ in accessing massive compact stars. We confront the approach with the data from GW170817 and GW190425.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا