Do you want to publish a course? Click here

Topology change, emergent symmetries and compact star matter

78   0   0.0 ( 0 )
 Added by Yong-Liang Ma
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Topology effects have being extensively studied and confirmed in strongly correlated condensed matter physics. In the large color number limit of QCD, baryons can be regarded as topological objects -- skyrmions -- and the baryonic matter can be regarded as a skyrmion matter. We review in this paper the generalized effective field theory for dense compact-star matter constructed with the robust inputs obtained from the skyrmion approach to dense nuclear matter, relying to possible ``emergent scale and local flavor symmetries at high density. All nuclear matter properties from the saturation density $n_0$ up to several times $n_0$ can be fairly well described. A uniquely novel -- and unorthdox -- feature of this theory is the precocious appearance of the pseudo-conformal sound velocity $v^2_{s}/c^2 approx 1/3$, with the non-vanishing trace of the energy momentum tensor of the system. The topology change encoded in the density scaling of low energy constants is interpreted as the quark-hadron continuity in the sense of Cheshire Cat Principle (CCP) at density $gsim 2n_0$ in accessing massive compact stars. We confront the approach with the data from GW170817 and GW190425.



rate research

Read More

Exploiting certain robust topological inputs from the skyrmion description of compressed baryonic matter with a scale-chiral symmetric Lagrangian, we predict the equation of state that is consistent with the properties of nuclear matter at the equilibrium density, supports the maximum mass of massive compact star $sim 2 M_odot$ and surprisingly gives the sound velocity close to the conformal velocity $1/sqrt{3}$ at densities $gtrsim 3 n_0$. At the core of this result is the observation that parity-doubling occurs in the nucleon structure as density goes above $sim 2n_0$ with a chiral-singlet mass $m_0 sim (0.6-0.9) m_N$, hinting at a possible up-to-date unsuspected source of proton mass and an emergence at high density of scale symmetry and flavor local symmetry, both hidden in the QCD vacuum.
112 - Yong-Liang Ma , Mannque Rho 2020
We review the recent exploration of a possible domain-wall structure of compressed baryonic matter in massive compact stars in terms of fractional quantum Hall droplets and skyrmions for baryons in medium. The theoretical framework is anchored on an effective nuclear effective field theory that incorporates two hidden symmetries, flavor local symmetry and scale symmetry conjectured to be dual to the gluons and quarks of QCD. It hints at a basically different, hitherto undiscovered structure of nuclear matter at low as well as high densities. Hidden genuine dilaton (GD) symmetry and hidden local symmetry (HLS) gauge-equivalent at low density to nonlinear sigma model capturing chiral symmetry, put together in nuclear effective field theory, are seen to play an increasingly important role in providing hadron-quark duality in baryonic matter. This strongly motivates incorporating both symmetries in formulating first-principles approaches to nuclear dynamics encompassing from the nuclear matter density to the highest density stable in the Universe.
Entanglement suppression in the strong interaction $S$-matrix is shown to be correlated with approximate spin-flavor symmetries that are observed in low-energy baryon interactions, the Wigner $SU(4)$ symmetry for two flavors and an $SU(16)$ symmetry for three flavors. We conjecture that dynamical entanglement suppression is a property of the strong interactions in the infrared, giving rise to these emergent symmetries and providing powerful constraints on the nature of nuclear and hypernuclear forces in dense matter.
The half-skyrmions that appear in dense baryonic matter when skyrmions are put on crystals modify drastically hadron properties in dense medium and affect strongly the nuclear tensor forces, thereby influencing the equation of state (EoS) of dense nuclear and asymmetric nuclear matter. The matter comprised of half skyrmions has vanishing quark condensate but non-vanishing pion decay constant and could be interpreted as a hadronic dual of strong-coupled quark matter. We infer from this observation combined with certain predictions of hidden local symmetry in low-energy hadronic interactionsa a set of new scaling laws -- called new-BR -- for the parameters in nuclear effective field theory controlled by renormalization-group flow. They are subjected to the EoS of symmetric and asymmetric nuclear matter, and are then applied to nuclear symmetry energies and properties of compact stars. The changeover from the skyrmion matter to a half-skyrmion matter that takes place after the cross-over density $n_{1/2}$ provides a simple and natural field theoretic explanation for the change of the EoS from soft to stiff at a density above that of nuclear matter required for compact stars as massive as $sim 2.4M_odot$. Cross-over density in the range $1.5n_0 lsim n_{1/2} lsim 2.0 n_0$ has been employed, and the possible skyrmion half-skyrmion coexistence {or cross-over} near $n_{1/2}$ is discussed. The novel structure of {the tensor forces and} the EoS obtained with the new-BR scaling is relevant for neutron-rich nuclei and compact star matter and could be studied in RIB (rare isotope beam) machines.
We explore the equation of state for nuclear matter in the quark-meson coupling model, including full Fock terms. The comparison with phenomenological constraints can be used to restrict the few additional parameters appearing in the Fock terms which are not present at Hartree level. Because the model is based upon the in-medium modification of the quark structure of the bound hadrons, it can be applied without additional parameters to include hyperons and to calculate the equation of state of dense matter in beta-equilibrium. This leads naturally to a study of the properties of neutron stars, including their maximum mass, their radii and density profiles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا