Do you want to publish a course? Click here

Shape-Texture Debiased Neural Network Training

94   0   0.0 ( 0 )
 Added by Yingwei Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Shape and texture are two prominent and complementary cues for recognizing objects. Nonetheless, Convolutional Neural Networks are often biased towards either texture or shape, depending on the training dataset. Our ablation shows that such bias degenerates model performance. Motivated by this observation, we develop a simple algorithm for shape-texture debiased learning. To prevent models from exclusively attending on a single cue in representation learning, we augment training data with images with conflicting shape and texture information (eg, an image of chimpanzee shape but with lemon texture) and, most importantly, provide the corresponding supervisions from shape and texture simultaneously. Experiments show that our method successfully improves model performance on several image recognition benchmarks and adversarial robustness. For example, by training on ImageNet, it helps ResNet-152 achieve substantial improvements on ImageNet (+1.2%), ImageNet-A (+5.2%), ImageNet-C (+8.3%) and Stylized-ImageNet (+11.1%), and on defending against FGSM adversarial attacker on ImageNet (+14.4%). Our method also claims to be compatible with other advanced data augmentation strategies, eg, Mixup, and CutMix. The code is available here: https://github.com/LiYingwei/ShapeTextureDebiasedTraining.



rate research

Read More

Mesh is an important and powerful type of data for 3D shapes and widely studied in the field of computer vision and computer graphics. Regarding the task of 3D shape representation, there have been extensive research efforts concentrating on how to represent 3D shapes well using volumetric grid, multi-view and point cloud. However, there is little effort on using mesh data in recent years, due to the complexity and irregularity of mesh data. In this paper, we propose a mesh neural network, named MeshNet, to learn 3D shape representation from mesh data. In this method, face-unit and feature splitting are introduced, and a general architecture with available and effective blocks are proposed. In this way, MeshNet is able to solve the complexity and irregularity problem of mesh and conduct 3D shape representation well. We have applied the proposed MeshNet method in the applications of 3D shape classification and retrieval. Experimental results and comparisons with the state-of-the-art methods demonstrate that the proposed MeshNet can achieve satisfying 3D shape classification and retrieval performance, which indicates the effectiveness of the proposed method on 3D shape representation.
Point cloud analysis is very challenging, as the shape implied in irregular points is difficult to capture. In this paper, we propose RS-CNN, namely, Relation-Shape Convolutional Neural Network, which extends regular grid CNN to irregular configuration for point cloud analysis. The key to RS-CNN is learning from relation, i.e., the geometric topology constraint among points. Specifically, the convolutional weight for local point set is forced to learn a high-level relation expression from predefined geometric priors, between a sampled point from this point set and the others. In this way, an inductive local representation with explicit reasoning about the spatial layout of points can be obtained, which leads to much shape awareness and robustness. With this convolution as a basic operator, RS-CNN, a hierarchical architecture can be developed to achieve contextual shape-aware learning for point cloud analysis. Extensive experiments on challenging benchmarks across three tasks verify RS-CNN achieves the state of the arts.
Contrasting the previous evidence that neurons in the later layers of a Convolutional Neural Network (CNN) respond to complex object shapes, recent studies have shown that CNNs actually exhibit a `texture bias: given an image with both texture and shape cues (e.g., a stylized image), a CNN is biased towards predicting the category corresponding to the texture. However, these previous studies conduct experiments on the final classification output of the network, and fail to robustly evaluate the bias contained (i) in the latent representations, and (ii) on a per-pixel level. In this paper, we design a series of experiments that overcome these issues. We do this with the goal of better understanding what type of shape information contained in the network is discriminative, where shape information is encoded, as well as when the network learns about object shape during training. We show that a network learns the majority of overall shape information at the first few epochs of training and that this information is largely encoded in the last few layers of a CNN. Finally, we show that the encoding of shape does not imply the encoding of localized per-pixel semantic information. The experimental results and findings provide a more accurate understanding of the behaviour of current CNNs, thus helping to inform future design choices.
Three-dimensional (3D) shape recognition has drawn much research attention in the field of computer vision. The advances of deep learning encourage various deep models for 3D feature representation. For point cloud and multi-view data, two popular 3D data modalities, different models are proposed with remarkable performance. However the relation between point cloud and views has been rarely investigated. In this paper, we introduce Point-View Relation Network (PVRNet), an effective network designed to well fuse the view features and the point cloud feature with a proposed relation score module. More specifically, based on the relation score module, the point-single-view fusion feature is first extracted by fusing the point cloud feature and each single view feature with point-singe-view relation, then the point-multi-view fusion feature is extracted by fusing the point cloud feature and the features of different number of views with point-multi-view relation. Finally, the point-single-view fusion feature and point-multi-view fusion feature are further combined together to achieve a unified representation for a 3D shape. Our proposed PVRNet has been evaluated on ModelNet40 dataset for 3D shape classification and retrieval. Experimental results indicate our model can achieve significant performance improvement compared with the state-of-the-art models.
Recent work has demonstrated that volumetric scene representations combined with differentiable volume rendering can enable photo-realistic rendering for challenging scenes that mesh reconstruction fails on. However, these methods entangle geometry and appearance in a black-box volume that cannot be edited. Instead, we present an approach that explicitly disentangles geometry--represented as a continuous 3D volume--from appearance--represented as a continuous 2D texture map. We achieve this by introducing a 3D-to-2D texture mapping (or surface parameterization) network into volumetric representations. We constrain this texture mapping network using an additional 2D-to-3D inverse mapping network and a novel cycle consistency loss to make 3D surface points map to 2D texture points that map back to the original 3D points. We demonstrate that this representation can be reconstructed using only multi-view image supervision and generates high-quality rendering results. More importantly, by separating geometry and texture, we allow users to edit appearance by simply editing 2D texture maps.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا