We study quantum corrections to hypersurfaces of dimension $d+1>2$ embedded in generic higher-dimensional spacetimes. Manifest covariance is maintained throughout the analysis and our methods are valid for arbitrary co-dimension and arbitrary bulk metric. A variety of theories which are prominent in the modern amplitude literature arise as special limits: the scalar sector of Dirac-Born-Infeld theories and their multi-field variants, as well as generic non-linear sigma models and extensions thereof. Our explicit one-loop results unite the leading corrections of all such models under a single umbrella. In contrast to naive computations which generate effective actions that appear to violate the non-linear symmetries of their classical counterparts, our efficient methods maintain manifest covariance at all stages and make the symmetry properties of the quantum action clear. We provide an explicit comparison between our compact construction and other approaches and demonstrate the ultimate physical equivalence between the superficially different results.
Concerning the gravitational corrections to the running of gauge couplings two different results were reported. Some authors claim that gravitational correction at the one-loop level indicates an interesting effect of universal gravitational decreasing of gauge couplings, that is, gravitational correction works universally in the direction of asymptotic freedom no matter how the gauge coupling behaves without gravity, while others reject the presence of gravitational correction at the one-loop level at all. Being these calculations done in the framework of an effective field theory approach to general relativity, we wanted to draw attention to a recently discovered profound quantum-gravitational effect of space-time dimension running that inevitably affects the running of gauge couplings. The running of space-time dimension indicating gradual reduction of dimension as one gets into smaller scales acts on the coupling constants in the direction of asymptotic freedom and therefore in any case manifests the plausibility of this quantum-gravitational effect. Curiously enough, the results are also in perfect quantitative agreement with those of Robinson and Wilczek.
It is possible to couple Dirac-Born-Infeld (DBI) scalars possessing generalized Galilean internal shift symmetries (Galileons) to nonlinear massive gravity in four dimensions, in such a manner that the interactions maintain the Galilean symmetry. Such a construction is of interest because it is not possible to couple such fields to massless General Relativity in the same way. We show that this theory has the primary constraint necessary to eliminate the Boulware-Deser ghost, thus preserving the attractive properties of both the Galileons and ghost-free massive gravity.
Field theory models of axion monodromy have been shown to exhibit vacuum energy sequestering as an emergent phenomenon for cancelling radiative corrections to the cosmological constant. We study one loop corrections to this class of models coming from virtual axions using a heat kernel expansion. We find that the structure of the original sequestering proposals is no longer preserved at low energies. Nevertheless, the cancellation of radiative corrections to the cosmological constant remains robust, even with the new structures required by quantum corrections.
Maximally symmetric curved-brane solutions are studied in dilatonic braneworld models which realise the self-tuning of the effective four-dimensional cosmological constant. It is found that no vacua in which the brane has de Sitter or anti-de Sitter geometry exist, unless one modifies the near-boundary asymptotics of the bulk fields. In the holographic dual picture, this corresponds to coupling the UV CFT to a curved metric (possibly with a defect). Alternatively, the same may be achieved in a flat-space QFT with suitable variable scalar sources. With these ingredients, it is found that maximally symmetric, positive and negative curvature solutions with a stabilised brane position generically exist. The space of such solutions is studied in two different types of realisations of the self-tuning framework. In some regimes we observe a large hierarchy between the curvature on the brane and the boundary UV CFT curvature. This is a dynamical effect due to the self-stabilisation mechanism. This setup provides an alternative route to realising de Sitter space in string theory.
We study the preheating process in a model of DBI inflation with a DBI-type inflaton coupling to a canonical entropy field. At the end of inflation, the inflaton field oscillates around its vacuum which can arise from an infrared cutoff parameter on the warp factor and correspondingly the evolution of its fluctuations can be approximately described by a generalized Hills equation in third order. We study the field fluctuations numerically and show that they could grow exponentially since the instability bands commonly exist in the DBI models if the amplitudes of background oscillations are of order or larger than the cutoff parameter. Our numerical result also reveals that the particle excitation of the matter field is more dramatic than that in usual case since the parametric resonance lasts longer when the effect of a warp factor is taken into account. Therefore, we conclude that the preheating process in the model of DBI inflation could be more efficient than that in standard inflation models.