Do you want to publish a course? Click here

Joint Semantic Analysis with Document-Level Cross-Task Coherence Rewards

72   0   0.0 ( 0 )
 Added by Rahul Aralikatte
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Coreference resolution and semantic role labeling are NLP tasks that capture different aspects of semantics, indicating respectively, which expressions refer to the same entity, and what semantic roles expressions serve in the sentence. However, they are often closely interdependent, and both generally necessitate natural language understanding. Do they form a coherent abstract representation of documents? We present a neural network architecture for joint coreference resolution and semantic role labeling for English, and train graph neural networks to model the coherence of the combined shallow semantic graph. Using the resulting coherence score as a reward for our joint semantic analyzer, we use reinforcement learning to encourage global coherence over the document and between semantic annotations. This leads to improvements on both tasks in multiple datasets from different domains, and across a range of encoders of different expressivity, calling, we believe, for a more holistic approach to semantics in NLP.



rate research

Read More

Document-level relation extraction aims to extract relations among multiple entity pairs from a document. Previously proposed graph-based or transformer-based models utilize the entities independently, regardless of global information among relational triples. This paper approaches the problem by predicting an entity-level relation matrix to capture local and global information, parallel to the semantic segmentation task in computer vision. Herein, we propose a Document U-shaped Network for document-level relation extraction. Specifically, we leverage an encoder module to capture the context information of entities and a U-shaped segmentation module over the image-style feature map to capture global interdependency among triples. Experimental results show that our approach can obtain state-of-the-art performance on three benchmark datasets DocRED, CDR, and GDA.
Past work that improves document-level sentiment analysis by encoding user and product information has been limited to considering only the text of the current review. We investigate incorporating additional review text available at the time of sentiment prediction that may prove meaningful for guiding prediction. Firstly, we incorporate all available historical review text belonging to the author of the review in question. Secondly, we investigate the inclusion of historical reviews associated with the current product (written by other users). We achieve this by explicitly storing representations of reviews written by the same user and about the same product and force the model to memorize all reviews for one particular user and product. Additionally, we drop the hierarchical architecture used in previous work to enable words in the text to directly attend to each other. Experiment results on IMDB, Yelp 2013 and Yelp 2014 datasets show improvement to state-of-the-art of more than 2 percentage points in the best case.
120 - Lingwei Wei , Dou Hu , Wei Zhou 2020
Document-level Sentiment Analysis (DSA) is more challenging due to vague semantic links and complicate sentiment information. Recent works have been devoted to leveraging text summarization and have achieved promising results. However, these summarization-based methods did not take full advantage of the summary including ignoring the inherent interactions between the summary and document. As a result, they limited the representation to express major points in the document, which is highly indicative of the key sentiment. In this paper, we study how to effectively generate a discriminative representation with explicit subject patterns and sentiment contexts for DSA. A Hierarchical Interaction Networks (HIN) is proposed to explore bidirectional interactions between the summary and document at multiple granularities and learn subject-oriented document representations for sentiment classification. Furthermore, we design a Sentiment-based Rethinking mechanism (SR) by refining the HIN with sentiment label information to learn a more sentiment-aware document representation. We extensively evaluate our proposed models on three public datasets. The experimental results consistently demonstrate the effectiveness of our proposed models and show that HIN-SR outperforms various state-of-the-art methods.
While pretrained language models (LM) have driven impressive gains over morpho-syntactic and semantic tasks, their ability to model discourse and pragmatic phenomena is less clear. As a step towards a better understanding of their discourse modelling capabilities, we propose a sentence intrusion detection task. We examine the performance of a broad range of pretrained LMs on this detection task for English. Lacking a dataset for the task, we introduce INSteD, a novel intruder sentence detection dataset, containing 170,000+ documents constructed from English Wikipedia and CNN news articles. Our experiments show that pretrained LMs perform impressively in in-domain evaluation, but experience a substantial drop in the cross-domain setting, indicating limited generalisation capacity. Further results over a novel linguistic probe dataset show that there is substantial room for improvement, especially in the cross-domain setting.
156 - Wang Xu , Kehai Chen , Tiejun Zhao 2020
In document-level relation extraction (DocRE), graph structure is generally used to encode relation information in the input document to classify the relation category between each entity pair, and has greatly advanced the DocRE task over the past several years. However, the learned graph representation universally models relation information between all entity pairs regardless of whether there are relationships between these entity pairs. Thus, those entity pairs without relationships disperse the attention of the encoder-classifier DocRE for ones with relationships, which may further hind the improvement of DocRE. To alleviate this issue, we propose a novel encoder-classifier-reconstructor model for DocRE. The reconstructor manages to reconstruct the ground-truth path dependencies from the graph representation, to ensure that the proposed DocRE model pays more attention to encode entity pairs with relationships in the training. Furthermore, the reconstructor is regarded as a relationship indicator to assist relation classification in the inference, which can further improve the performance of DocRE model. Experimental results on a large-scale DocRE dataset show that the proposed model can significantly improve the accuracy of relation extraction on a strong heterogeneous graph-based baseline.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا