No Arabic abstract
Functions with low $c$-differential uniformity were proposed in $2020$ and attracted lots of attention, especially the P$c$N and AP$c$N functions, due to their applications in cryptography. The objective of this paper is to study P$c$N and AP$c$N functions. As a consequence, we propose a class of P$c$N functions and four classes of AP$c$N functions by using the cyclotomic technique and the switch method. In addition, four classes of P$c$N or AP$c$N functions are presented by virtue of (generalized) AGW criterion.
In this paper, we present three new classes of $q$-ary quantum MDS codes utilizing generalized Reed-Solomon codes satisfying Hermitian self-orthogonal property. Among our constructions, the minimum distance of some $q$-ary quantum MDS codes can be bigger than $frac{q}{2}+1$. Comparing to previous known constructions, the lengths of codes in our constructions are more flexible.
Let $mathbb{F}_{p^{n}}$ be the finite field with $p^n$ elements and $operatorname{Tr}(cdot)$ be the trace function from $mathbb{F}_{p^{n}}$ to $mathbb{F}_{p}$, where $p$ is a prime and $n$ is an integer. Inspired by the works of Mesnager (IEEE Trans. Inf. Theory 60(7): 4397-4407, 2014) and Tang et al. (IEEE Trans. Inf. Theory 63(10): 6149-6157, 2017), we study a class of bent functions of the form $f(x)=g(x)+F(operatorname{Tr}(u_1x),operatorname{Tr}(u_2x),cdots,operatorname{Tr}(u_{tau}x))$, where $g(x)$ is a function from $mathbb{F}_{p^{n}}$ to $mathbb{F}_{p}$, $taugeq2$ is an integer, $F(x_1,cdots,x_n)$ is a reduced polynomial in $mathbb{F}_{p}[x_1,cdots,x_n]$ and $u_iin mathbb{F}^{*}_{p^n}$ for $1leq i leq tau$. As a consequence, we obtain a generic result on the Walsh transform of $f(x)$ and characterize the bentness of $f(x)$ when $g(x)$ is bent for $p=2$ and $p>2$ respectively. Our results generalize some earlier works. In addition, we study the construction of bent functions $f(x)$ when $g(x)$ is not bent for the first time and present a class of bent functions from non-bent Gold functions.
In this work we establish some new interleavers based on permutation functions. The inverses of these interleavers are known over a finite field $mathbb{F}_q$. For the first time M{o}bius and Redei functions are used to give new deterministic interleavers. Furthermore we employ Skolem sequences in order to find new interleavers with known cycle structure. In the case of Redei functions an exact formula for the inverse function is derived. The cycle structure of Redei functions is also investigated. The self-inverse and non-self-inver
In this paper, we show that LCD codes are not equivalent to linear codes over small finite fields. The enumeration of binary optimal LCD codes is obtained. We also get the exact value of LD$(n,2)$ over $mathbb{F}_3$ and $mathbb{F}_4$. We study the bound of LCD codes over $mathbb{F}_q$.
In this paper, we investigate the power functions $F(x)=x^d$ over the finite field $mathbb{F}_{2^{4n}}$, where $n$ is a positive integer and $d=2^{3n}+2^{2n}+2^{n}-1$. It is proved that $F(x)=x^d$ is APcN at certain $c$s in $mathbb{F}_{2^{4n}}$, and it is the second class of APcN power functions over finite fields of even characteristic. Further, the $c$-differential spectrum of these power functions is also determined.