Do you want to publish a course? Click here

On hamiltonian cycles in Cayley graphs of order pqrs

98   0   0.0 ( 0 )
 Added by Dave Witte Morris
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Let $G$ be a finite group. We show that if $|G| = pqrs$, where $p$, $q$, $r$, and $s$ are distinct odd primes, then every connected Cayley graph on $G$ has a hamiltonian cycle.



rate research

Read More

153 - Dave Witte Morris 2017
We show that if G is a finite group whose commutator subgroup [G,G] has order 2p, where p is an odd prime, then every connected Cayley graph on G has a hamiltonian cycle.
We provide a computer-assisted proof that if G is any finite group of order kp, where k < 48 and p is prime, then every connected Cayley graph on G is hamiltonian (unless kp = 2). As part of the proof, it is verified that every connected Cayley graph of order less than 48 is either hamiltonian connected or hamiltonian laceable (or has valence less than three).
We prove that if $G$ is a $k$-partite graph on $n$ vertices in which all of the parts have order at most $n/r$ and every vertex is adjacent to at least a $1-1/r+o(1)$ proportion of the vertices in every other part, then $G$ contains the $(r-1)$-st power of a Hamiltonian cycle
In 1930, Kuratowski showed that $K_{3,3}$ and $K_5$ are the only two minor-minimal non-planar graphs. Robertson and Seymour extended finiteness of the set of forbidden minors for any surface. v{S}ir{a}v{n} and Kochol showed that there are infinitely many $k$-crossing-critical graphs for any $kge 2$, even if restricted to simple $3$-connected graphs. Recently, $2$-crossing-critical graphs have been completely characterized by Bokal, Oporowski, Richter, and Salazar. We present a simplified description of large 2-crossing-critical graphs and use this simplification to count Hamiltonian cycles in such graphs. We generalize this approach to an algorithm counting Hamiltonian cycles in all 2-tiled graphs, thus extending the results of Bodrov{z}a-Pantic, Kwong, Doroslovav{c}ki, and Pantic for $n = 2$.
100 - Saptarshi Bej 2020
Barnettes conjecture is an unsolved problem in graph theory. The problem states that every 3-regular (cubic), 3-connected, planar, bipartite (Barnette) graph is Hamiltonian. Partial results have been derived with restrictions on number of vertices, several properties of face-partitions and dual graphs of Barnette graphs while some studies focus just on structural characterizations of Barnette graphs. Noting that Spider web graphs are a subclass of Annular Decomposable Barnette (ADB graphs) graphs and are Hamiltonian, we study ADB graphs and their annular-connected subclass (ADB-AC graphs). We show that ADB-AC graphs can be generated from the smallest Barnette graph using recursive edge operations. We derive several conditions assuring the existence of Hamiltonian cycles in ADB-AC graphs without imposing restrictions on number of vertices, face size or any other constraints on the face partitions. We show that there can be two types of annuli in ADB-AC graphs, ring annuli and block annuli. Our main result is, ADB-AC graphs having non singular sequences of ring annuli are Hamiltonian.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا