Do you want to publish a course? Click here

Mapping Charge Recombination and the Effect of Point Defect Insertion in Gallium Arsenide Nanowire Heterojunctions

117   0   0.0 ( 0 )
 Added by B. C. Regan
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electronic devices are extremely sensitive to defects in their constituent semiconductors, but locating electronic point defects in bulk semiconductors has previously been impossible. Here we apply scanning transmission electron microscopy (STEM) electron beam-induced current (EBIC) imaging to map electronic defects in a GaAs nanowire Schottky diode. Imaging with a non-damaging 80 or 200 kV STEM acceleration potential reveals a minority-carrier diffusion length that decreases near the surface of the hexagonal nanowire, thereby demonstrating that the devices charge collection efficiency (CCE) is limited by surface defects. Imaging with a 300 keV STEM beam introduces vacancy-interstitial (VI, or Frenkel) defects in the GaAs that increase carrier recombination and reduce the CCE of the diode. We create, locate, and characterize a single insertion event, determining that a defect inserted 7 nm from the Schottky interface broadly reduces the CCE by 10% across the entire nanowire device. Variable-energy STEM EBIC imaging thus allows both benign mapping and pinpoint modification of a devices e-h recombination landscape, enabling controlled experiments that illuminate the impact of both extended (1D and 2D) and point (0D) defects on semiconductor device performance.



rate research

Read More

The half-integer quantum Hall effect in epitaxial graphene is compared with high precision to the well known integer effect in a GaAs/AlGaAs heterostructure. We find no difference between the quantised resistance values within the relative standard uncertainty of our measurement of $8.7times 10^{-11}$. The result places new tighter limits on any possible correction terms to the simple relation $R_{rm K}=h/e^2$, and also demonstrates that epitaxial graphene samples are suitable for application as electrical resistance standards of the highest metrological quality. We discuss the characterisation of the graphene sample used in this experiment and present the details of the cryogenic current comparator bridge and associated uncertainty budget.
Gate-defined quantum dots in gallium arsenide (GaAs) have been used extensively for pioneering spin qubit devices due to the relative simplicity of fabrication and favourable electronic properties such as a single conduction band valley, a small effective mass, and stable dopants. GaAs spin qubits are readily produced in many labs and are currently studied for various applications, including entanglement, quantum non-demolition measurements, automatic tuning, multi-dot arrays, coherent exchange coupling, and teleportation. Even while much attention is shifting to other materials, GaAs devices will likely remain a workhorse for proof-of-concept quantum information processing and solid-state experiments.
We have studied the nature and dynamics of spin-dependent charge carrier recombination in Tris(8-hydroxyquinolinato) aluminum (Alq$_3$) films in light emitting diodes at room temperature using continuous wave and pulsed electrically detected magnetic resonance (EDMR) spectroscopy. We found that the EDMR signal is dominated by an electron-hole recombination process, and another, weaker EDMR signal whose fundamental nature was investigated. From the pulsed EDMR measurements we obtained a carrier spin relaxation time, $T_2 = 45pm 25$ ns which is much shorter than $T_2$ in conjugated polymers, but relatively long for a molecule containing elements with high atomic number. Using multi-frequency continuous wave EDMR spectroscopy, we obtained the local hyperfine field distributions for electrons and holes, as well as their respective spin-orbit coupling induced g-factor and g-strain values.
139 - G. Sallen , S. Kunz , T. Amand 2013
Optical and electrical control of the nuclear spin system allows enhancing the sensitivity of NMR applications and spin-based information storage and processing. Dynamic nuclear polarization in semiconductors is commonly achieved in the presence of a stabilizing external magnetic field. Here we report efficient optical pumping of nuclear spins at zero magnetic field in strain free GaAs quantum dots. The strong interaction of a single, optically injected electron spin with the nuclear spins acts as a stabilizing, effective magnetic field (Knight field) on the nuclei. We optically tune the Knight field amplitude and direction. In combination with a small transverse magnetic field, we are able to control the longitudinal and transverse component of the nuclear spin polarization in the absence of lattice strain i.e. nuclear quadrupole effects, as reproduced by our model calculations.
Imperfections in the crystal structure, such as point defects, can strongly modify the optical and transport properties of materials. Here, we study the effect of point defects on the optical and DC conductivities of single layers of semiconducting transition metal dichalcogenides with the form $M$S$_2$, where $M$=Mo or W. The electronic structure is considered within a six bands tight-binding model, which accounts for the relevant combination of $d$ orbitals of the metal $M$ and $p$ orbitals of the chalcogen $S$. We use the Kubo formula for the calculation of the conductivity in samples with different distributions of disorder. We find that $M$ and/or S defects create mid-gap states that localize charge carriers around the defects and which modify the optical and transport properties of the material, in agreement with recent experiments. Furthermore, our results indicate a much higher mobility for $p$-doped WS$_2$ in comparison to MoS$_2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا