Do you want to publish a course? Click here

On Long-Tailed Phenomena in Neural Machine Translation

167   0   0.0 ( 0 )
 Added by Vikas Raunak
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

State-of-the-art Neural Machine Translation (NMT) models struggle with generating low-frequency tokens, tackling which remains a major challenge. The analysis of long-tailed phenomena in the context of structured prediction tasks is further hindered by the added complexities of search during inference. In this work, we quantitatively characterize such long-tailed phenomena at two levels of abstraction, namely, token classification and sequence generation. We propose a new loss function, the Anti-Focal loss, to better adapt model training to the structural dependencies of conditional text generation by incorporating the inductive biases of beam search in the training process. We show the efficacy of the proposed technique on a number of Machine Translation (MT) datasets, demonstrating that it leads to significant gains over cross-entropy across different language pairs, especially on the generation of low-frequency words. We have released the code to reproduce our results.



rate research

Read More

Modern neural machine translation (NMT) models have achieved competitive performance in standard benchmarks such as WMT. However, there still exist significant issues such as robustness, domain generalization, etc. In this paper, we study NMT models from the perspective of compositional generalization by building a benchmark dataset, CoGnition, consisting of 216k clean and consistent sentence pairs. We quantitatively analyze effects of various factors using compound translation error rate, then demonstrate that the NMT model fails badly on compositional generalization, although it performs remarkably well under traditional metrics.
We participate in the WMT 2020 shared news translation task on Chinese to English. Our system is based on the Transformer (Vaswani et al., 2017a) with effective variants and the DTMT (Meng and Zhang, 2019) architecture. In our experiments, we employ data selection, several synthetic data generation approaches (i.e., back-translation, knowledge distillation, and iterative in-domain knowledge transfer), advanced finetuning approaches and self-bleu based model ensemble. Our constrained Chinese to English system achieves 36.9 case-sensitive BLEU score, which is the highest among all submissions.
Multilingual Neural Machine Translation (NMT) models are capable of translating between multiple source and target languages. Despite various approaches to train such models, they have difficulty with zero-shot translation: translating between language pairs that were not together seen during training. In this paper we first diagnose why state-of-the-art multilingual NMT models that rely purely on parameter sharing, fail to generalize to unseen language pairs. We then propose auxiliary losses on the NMT encoder that impose representational invariance across languages. Our simple approach vastly improves zero-shot translation quality without regressing on supervised directions. For the first time, on WMT14 English-FrenchGerman, we achieve zero-shot performance that is on par with pivoting. We also demonstrate the easy scalability of our approach to multiple languages on the IWSLT 2017 shared task.
In this work, we study hallucinations in Neural Machine Translation (NMT), which lie at an extreme end on the spectrum of NMT pathologies. Firstly, we connect the phenomenon of hallucinations under source perturbation to the Long-Tail theory of Feldman (2020), and present an empirically validated hypothesis that explains hallucinations under source perturbation. Secondly, we consider hallucinations under corpus-level noise (without any source perturbation) and demonstrate that two prominent types of natural hallucinations (detached and oscillatory outputs) could be generated and explained through specific corpus-level noise patterns. Finally, we elucidate the phenomenon of hallucination amplification in popular data-generation processes such as Backtranslation and sequence-level Knowledge Distillation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا