Do you want to publish a course? Click here

Rethinking the Extraction and Interaction of Multi-Scale Features for Vessel Segmentation

92   0   0.0 ( 0 )
 Added by Yicheng Wu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Analyzing the morphological attributes of blood vessels plays a critical role in the computer-aided diagnosis of many cardiovascular and ophthalmologic diseases. Although being extensively studied, segmentation of blood vessels, particularly thin vessels and capillaries, remains challenging mainly due to the lack of an effective interaction between local and global features. In this paper, we propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans, respectively. In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features, and the coarse-to-fine (CF) module replaces the conventional decoder to enhance the details of thin vessels and process hard-to-classify pixels again. We evaluated our PC-Net on the Digital Retinal Images for Vessel Extraction (DRIVE) database and an in-house 3D major artery (3MA) database against several recent methods. Our results not only demonstrate the effectiveness of the proposed PSE module and CF module, but also suggest that our proposed PC-Net sets new state of the art in the segmentation of retinal vessels (AUC: 98.31%) and major arteries (AUC: 98.35%) on both databases, respectively.



rate research

Read More

For artificial intelligence-based image analysis methods to reach clinical applicability, the development of high-performance algorithms is crucial. For example, existent segmentation algorithms based on natural images are neither efficient in their parameter use nor optimized for medical imaging. Here we present MoNet, a highly optimized neural-network-based pancreatic segmentation algorithm focused on achieving high performance by efficient multi-scale image feature utilization.
Retinal blood vessel can assist doctors in diagnosis of eye-related diseases such as diabetes and hypertension, and its segmentation is particularly important for automatic retinal image analysis. However, it is challenging to segment these vessels structures, especially the thin capillaries from the color retinal image due to low contrast and ambiguousness. In this paper, we propose pyramid U-Net for accurate retinal vessel segmentation. In pyramid U-Net, the proposed pyramid-scale aggregation blocks (PSABs) are employed in both the encoder and decoder to aggregate features at higher, current and lower levels. In this way, coarse-to-fine context information is shared and aggregated in each block thus to improve the location of capillaries. To further improve performance, two optimizations including pyramid inputs enhancement and deep pyramid supervision are applied to PSABs in the encoder and decoder, respectively. For PSABs in the encoder, scaled input images are added as extra inputs. While for PSABs in the decoder, scaled intermediate outputs are supervised by the scaled segmentation labels. Extensive evaluations show that our pyramid U-Net outperforms the current state-of-the-art methods on the public DRIVE and CHASE-DB1 datasets.
89 - Mo Zhang , Fei Yu , Jie Zhao 2021
Blood vessel segmentation is crucial for many diagnostic and research applications. In recent years, CNN-based models have leaded to breakthroughs in the task of segmentation, however, such methods usually lose high-frequency information like object boundaries and subtle structures, which are vital to vessel segmentation. To tackle this issue, we propose Boundary Enhancement and Feature Denoising (BEFD) module to facilitate the network ability of extracting boundary information in semantic segmentation, which can be integrated into arbitrary encoder-decoder architecture in an end-to-end way. By introducing Sobel edge detector, the network is able to acquire additional edge prior, thus enhancing boundary in an unsupervised manner for medical image segmentation. In addition, we also utilize a denoising block to reduce the noise hidden in the low-level features. Experimental results on retinal vessel dataset and angiocarpy dataset demonstrate the superior performance of the new BEFD module.
192 - Wenao Ma , Shuang Yu , Kai Ma 2020
Retinal artery/vein (A/V) classification plays a critical role in the clinical biomarker study of how various systemic and cardiovascular diseases affect the retinal vessels. Conventional methods of automated A/V classification are generally complicated and heavily depend on the accurate vessel segmentation. In this paper, we propose a multi-task deep neural network with spatial activation mechanism that is able to segment full retinal vessel, artery and vein simultaneously, without the pre-requirement of vessel segmentation. The input module of the network integrates the domain knowledge of widely used retinal preprocessing and vessel enhancement techniques. We specially customize the output block of the network with a spatial activation mechanism, which takes advantage of a relatively easier task of vessel segmentation and exploits it to boost the performance of A/V classification. In addition, deep supervision is introduced to the network to assist the low level layers to extract more semantic information. The proposed network achieves pixel-wise accuracy of 95.70% for vessel segmentation, and A/V classification accuracy of 94.50%, which is the state-of-the-art performance for both tasks on the AV-DRIVE dataset. Furthermore, we have also tested the model performance on INSPIRE-AVR dataset, which achieves a skeletal A/V classification accuracy of 91.6%.
267 - Jiafa He , Chengwei Pan , Can Yang 2020
Automatic blood vessel extraction from 3D medical images is crucial for vascular disease diagnoses. Existing methods based on convolutional neural networks (CNNs) may suffer from discontinuities of extracted vessels when segmenting such thin tubular structures from 3D images. We argue that preserving the continuity of extracted vessels requires to take into account the global geometry. However, 3D convolutions are computationally inefficient, which prohibits the 3D CNNs from sufficiently large receptive fields to capture the global cues in the entire image. In this work, we propose a hybrid representation learning approach to address this challenge. The main idea is to use CNNs to learn local appearances of vessels in image crops while using another point-cloud network to learn the global geometry of vessels in the entire image. In inference, the proposed approach extracts local segments of vessels using CNNs, classifies each segment based on global geometry using the point-cloud network, and finally connects all the segments that belong to the same vessel using the shortest-path algorithm. This combination results in an efficient, fully-automatic and template-free approach to centerline extraction from 3D images. We validate the proposed approach on CTA datasets and demonstrate its superior performance compared to both traditional and CNN-based baselines.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا