Do you want to publish a course? Click here

A Vertex Cut based Framework for Load Balancing and Parallelism Optimization in Multi-core Systems

89   0   0.0 ( 0 )
 Added by Guixiang Ma
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

High-level applications, such as machine learning, are evolving from simple models based on multilayer perceptrons for simple image recognition to much deeper and more complex neural networks for self-driving vehicle control systems.The rapid increase in the consumption of memory and computational resources by these models demands the use of multi-core parallel systems to scale the execution of the complex emerging applications that depend on them. However, parallel programs running on high-performance computers often suffer from data communication bottlenecks, limited memory bandwidth, and synchronization overhead due to irregular critical sections. In this paper, we propose a framework to reduce the data communication and improve the scalability and performance of these applications in multi-core systems. We design a vertex cut framework for partitioning LLVM IR graphs into clusters while taking into consideration the data communication and workload balance among clusters. First, we construct LLVM graphs by compiling high-level programs into LLVM IR, instrumenting code to obtain the execution order of basic blocks and the execution time for each memory operation, and analyze data dependencies in dynamic LLVM traces. Next, we formulate the problem as Weight Balanced $p$-way Vertex Cut, and propose a generic and flexible framework, wherein four different greedy algorithms are proposed for solving this problem. Lastly, we propose a memory-centric run-time mapping of the linear time complexity to map clusters generated from the vertex cut algorithms onto a multi-core platform. We conclude that our best algorithm, WB-Libra, provides performance improvements of 1.56x and 1.86x over existing state-of-the-art approaches for 8 and 1024 clusters running on a multi-core platform, respectively.



rate research

Read More

Random hashing is a standard method to balance loads among nodes in Peer-to-Peer networks. However, hashing destroys locality properties of object keys, the critical properties to many applications, more specifically, those that require range searching. To preserve a key order while keeping loads balanced, Ganesan, Bawa and Garcia-Molina proposed a load-balancing algorithm that supports both object insertion and deletion that guarantees a ratio of 4.237 between the maximum and minimum loads among nodes in the network using constant amortized costs. However, their algorithm is not straightforward to implement in real networks because it is recursive. Their algorithm mostly uses local operations with global max-min load information. In this work, we present a simple non-recursive algorithm using essentially the same primitive operations as in Ganesan {em et al.}s work. We prove that for insertion and deletion, our algorithm guarantees a constant max-min load ratio of 7.464 with constant amortized costs.
In this paper, we propose the first optimum process scheduling algorithm for an increasingly prevalent type of heterogeneous multicore (HEMC) system that combines high-performance big cores and energy-efficient small cores with the same instruction-set architecture (ISA). Existing algorithms are all heuristics-based, and the well-known IPC-driven approach essentially tries to schedule high scaling factor processes on big cores. Our analysis shows that, for optimum solutions, it is also critical to consider placing long running processes on big cores. Tests of SPEC 2006 cases on various big-small core combinations show that our proposed optimum approach is up to 34% faster than the IPC-driven heuristic approach in terms of total workload completion time. The complexity of our algorithm is O(NlogN) where N is the number of processes. Therefore, the proposed optimum algorithm is practical for use.
Handheld devices, while growing rapidly, are inherently constrained and lack the capability of executing resource hungry applications. This paper presents the design and implementation of distributed analysis and load-balancing system for hand-held devices using multi-agents system. This system enables low resource mobile handheld devices to act as potential clients for Grid enabled applications and analysis environments. We propose a system, in which mobile agents will transport, schedule, execute and return results for heavy computational jobs submitted by handheld devices. Moreover, in this way, our system provides high throughput computing environment for hand-held devices.
Distributed processing across a networked environment suffers from unpredictable behavior of speedup due to heterogeneous nature of the hardware and software in the remote machines. It is challenging to get a better performance from a distributed system by distributing task in an intelligent manner such that the heterogeneous nature of the system do not have any effect on the speedup ratio. This paper introduces homogenization, a technique that distributes and balances the workload in such a manner that the user gets the highest speedup possible from a distributed environment. Along with providing better performance, homogenization is totally transparent to the user and requires no interaction with the system.
In computer networks, participants may cooperate in processing tasks, so that loads are balanced among them. We present local distributed algorithms that (repeatedly) use local imbalance criteria to transfer loads concurrently across the participants of the system, iterating until all loads are balanced. Our algorithms are based on a short local deal-agreement communication of proposal/deal, based on the neighborhood loads. They converge monotonically, always providing a better state as the execution progresses. Besides, our algorithms avoid making loads temporarily negative. Thus, they may be considered anytime ones, in the sense that they can be stopped at any time during the execution. We show that our synchronous load balancing algorithms achieve $epsilon$-Balanced state for the continuous setting and 1-Balanced state for the discrete setting in all graphs, within $O(n D log(n K/epsilon))$ and $O(n D log(n K/D) + n D^2)$ time, respectively, where $n$ is the number of nodes, $K$ is the initial discrepancy, $D$ is the graph diameter, and $epsilon$ is the final discrepancy. Our other monotonic synchronous and asynchronous algorithms for the discrete setting are generalizations of the first presented algorithms, where load balancing is performed concurrently with more than one neighbor. These algorithms arrive at a 1-Balanced state in time $O(n K^2)$ in general graphs, but have a potential to be faster as the loads are balanced among all neighbors, rather than with only one; we describe a scenario that demonstrates the potential for a fast ($O(1)$) convergence. Our asynchronous algorithm avoids the need to wait for the slowest participants activity prior to making the next load balancing steps as synchronous settings restrict. We also introduce a self-stabilizing version of our asynchronous algorithm.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا