Do you want to publish a course? Click here

A Noise-Tolerant Quasi-Newton Algorithm for Unconstrained Optimization

82   0   0.0 ( 0 )
 Added by Hao-Jun Shi
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

This paper describes an extension of the BFGS and L-BFGS methods for the minimization of a nonlinear function subject to errors. This work is motivated by applications that contain computational noise, employ low-precision arithmetic, or are subject to statistical noise. The classical BFGS and L-BFGS methods can fail in such circumstances because the updating procedure can be corrupted and the line search can behave erratically. The proposed method addresses these difficulties and ensures that the BFGS update is stable by employing a lengthening procedure that spaces out the points at which gradient differences are collected. A new line search, designed to tolerate errors, guarantees that the Armijo-Wolfe conditions are satisfied under most reasonable conditions, and works in conjunction with the lengthening procedure. The proposed methods are shown to enjoy convergence guarantees for strongly convex functions. Detailed implementations of the methods are presented, together with encouraging numerical results.



rate research

Read More

We consider the problem of minimizing a continuous function that may be nonsmooth and nonconvex, subject to bound constraints. We propose an algorithm that uses the L-BFGS quasi-Newton approximation of the problems curvature together with a variant of the weak Wolfe line search. The key ingredient of the method is an active-set selection strategy that defines the subspace in which search directions are computed. To overcome the inherent shortsightedness of the gradient for a nonsmooth function, we propose two strategies. The first relies on an approximation of the $epsilon$-minimum norm subgradient, and the second uses an iterative corrective loop that augments the active set based on the resulting search directions. We describe a Python implementation of the proposed algorithm and present numerical results on a set of standard test problems to illustrate the efficacy of our approach.
111 - Stephen A. Vavasis 2008
We present a gradient-based algorithm for unconstrained minimization derived from iterated linear change of basis. The new method is equivalent to linear conjugate gradient in the case of a quadratic objective function. In the case of exact line search it is a secant method. In practice, it performs comparably to BFGS and DFP and is sometimes more robust.
115 - Jian-Wen Peng , Jie Ren 2021
In this paper, we propose some new proximal quasi-Newton methods with line search or without line search for a special class of nonsmooth multiobjective optimization problems, where each objective function is the sum of a twice continuously differentiable strongly convex function and a proper convex but not necessarily differentiable function. In these new proximal quasi-Newton methods, we approximate the Hessian matrices by using the well known BFGS, self-scaling BFGS, and the Huang BFGS method. We show that each accumulation point of the sequence generated by these new algorithms is a Pareto stationary point of the multiobjective optimization problem. In addition, we give their applications in robust multiobjective optimization, and we show that the subproblems of proximal quasi-Newton algorithms can be regarded as quadratic programming problems. Numerical experiments are carried out to verify the effectiveness of the proposed method.
62 - Amit Verma , Mark Lewis 2021
Quadratic Unconstrained Binary Optimization models are useful for solving a diverse range of optimization problems. Constraints can be added by incorporating quadratic penalty terms into the objective, often with the introduction of slack variables needed for conversion of inequalities. This transformation can lead to a significant increase in the size and density of the problem. Herein, we propose an efficient approach for recasting inequality constraints that reduces the number of linear and quadratic variables. Experimental results illustrate the efficacy.
This paper presents a finite difference quasi-Newton method for the minimization of noisy functions. The method takes advantage of the scalability and power of BFGS updating, and employs an adaptive procedure for choosing the differencing interval $h$ based on the noise estimation techniques of Hamming (2012) and More and Wild (2011). This noise estimation procedure and the selection of $h$ are inexpensive but not always accurate, and to prevent failures the algorithm incorporates a recovery mechanism that takes appropriate action in the case when the line search procedure is unable to produce an acceptable point. A novel convergence analysis is presented that considers the effect of a noisy line search procedure. Numerical experiments comparing the method to a function interpolating trust region method are presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا