No Arabic abstract
Natural language understanding (NLU) and Natural language generation (NLG) tasks hold a strong dual relationship, where NLU aims at predicting semantic labels based on natural language utterances and NLG does the opposite. The prior work mainly focused on exploiting the duality in model training in order to obtain the models with better performance. However, regarding the fast-growing scale of models in the current NLP area, sometimes we may have difficulty retraining whole NLU and NLG models. To better address the issue, this paper proposes to leverage the duality in the inference stage without the need of retraining. The experiments on three benchmark datasets demonstrate the effectiveness of the proposed method in both NLU and NLG, providing the great potential of practical usage.
Natural language understanding (NLU) and natural language generation (NLG) are both critical research topics in the NLP field. Natural language understanding is to extract the core semantic meaning from the given utterances, while natural language generation is opposite, of which the goal is to construct corresponding sentences based on the given semantics. However, such dual relationship has not been investigated in the literature. This paper proposes a new learning framework for language understanding and generation on top of dual supervised learning, providing a way to exploit the duality. The preliminary experiments show that the proposed approach boosts the performance for both tasks.
In modular dialogue systems, natural language understanding (NLU) and natural language generation (NLG) are two critical components, where NLU extracts the semantics from the given texts and NLG is to construct corresponding natural language sentences based on the input semantic representations. However, the dual property between understanding and generation has been rarely explored. The prior work is the first attempt that utilized the duality between NLU and NLG to improve the performance via a dual supervised learning framework. However, the prior work still learned both components in a supervised manner, instead, this paper introduces a general learning framework to effectively exploit such duality, providing flexibility of incorporating both supervised and unsupervised learning algorithms to train language understanding and generation models in a joint fashion. The benchmark experiments demonstrate that the proposed approach is capable of boosting the performance of both NLU and NLG.
This paper presents a new Unified pre-trained Language Model (UniLM) that can be fine-tuned for both natural language understanding and generation tasks. The model is pre-trained using three types of language modeling tasks: unidirectional, bidirectional, and sequence-to-sequence prediction. The unified modeling is achieved by employing a shared Transformer network and utilizing specific self-attention masks to control what context the prediction conditions on. UniLM compares favorably with BERT on the GLUE benchmark, and the SQuAD 2.0 and CoQA question answering tasks. Moreover, UniLM achieves new state-of-the-art results on five natural language generation datasets, including improving the CNN/DailyMail abstractive summarization ROUGE-L to 40.51 (2.04 absolute improvement), the Gigaword abstractive summarization ROUGE-L to 35.75 (0.86 absolute improvement), the CoQA generative question answering F1 score to 82.5 (37.1 absolute improvement), the SQuAD question generation BLEU-4 to 22.12 (3.75 absolute improvement), and the DSTC7 document-grounded dialog response generation NIST-4 to 2.67 (human performance is 2.65). The code and pre-trained models are available at https://github.com/microsoft/unilm.
Neural natural language generation (NLG) and understanding (NLU) models are data-hungry and require massive amounts of annotated data to be competitive. Recent frameworks address this bottleneck with generative models that synthesize weak labels at scale, where a small amount of training labels are expert-curated and the rest of the data is automatically annotated. We follow that approach, by automatically constructing a large-scale weakly-labeled data with a fine-tuned GPT-2, and employ a semi-supervised framework to jointly train the NLG and NLU models. The proposed framework adapts the parameter updates to the models according to the estimated label-quality. On both the E2E and Weather benchmarks, we show that this weakly supervised training paradigm is an effective approach under low resource scenarios and outperforming benchmark systems on both datasets when 100% of training data is used.
Natural language understanding (NLU) and natural language generation (NLG) are two fundamental and related tasks in building task-oriented dialogue systems with opposite objectives: NLU tackles the transformation from natural language to formal representations, whereas NLG does the reverse. A key to success in either task is parallel training data which is expensive to obtain at a large scale. In this work, we propose a generative model which couples NLU and NLG through a shared latent variable. This approach allows us to explore both spaces of natural language and formal representations, and facilitates information sharing through the latent space to eventually benefit NLU and NLG. Our model achieves state-of-the-art performance on two dialogue datasets with both flat and tree-structured formal representations. We also show that the model can be trained in a semi-supervised fashion by utilising unlabelled data to boost its performance.