Do you want to publish a course? Click here

Dual Supervised Learning for Natural Language Understanding and Generation

90   0   0.0 ( 0 )
 Added by Shang-Yu Su
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Natural language understanding (NLU) and natural language generation (NLG) are both critical research topics in the NLP field. Natural language understanding is to extract the core semantic meaning from the given utterances, while natural language generation is opposite, of which the goal is to construct corresponding sentences based on the given semantics. However, such dual relationship has not been investigated in the literature. This paper proposes a new learning framework for language understanding and generation on top of dual supervised learning, providing a way to exploit the duality. The preliminary experiments show that the proposed approach boosts the performance for both tasks.



rate research

Read More

In Natural Language Generation (NLG), End-to-End (E2E) systems trained through deep learning have recently gained a strong interest. Such deep models need a large amount of carefully annotated data to reach satisfactory performance. However, acquiring such datasets for every new NLG application is a tedious and time-consuming task. In this paper, we propose a semi-supervised deep learning scheme that can learn from non-annotated data and annotated data when available. It uses an NLG and a Natural Language Understanding (NLU) sequence-to-sequence models which are learned jointly to compensate for the lack of annotation. Experiments on two benchmark datasets show that, with limited amount of annotated data, the method can achieve very competitive results while not using any pre-processing or re-scoring tricks. These findings open the way to the exploitation of non-annotated datasets which is the current bottleneck for the E2E NLG system development to new applications.
Building quality machine learning models for natural language understanding (NLU) tasks relies heavily on labeled data. Weak supervision has been shown to provide valuable supervision when large amount of labeled data is unavailable or expensive to obtain. Existing works studying weak supervision for NLU either mostly focus on a specific task or simulate weak supervision signals from ground-truth labels. To date a benchmark for NLU with real world weak supervision signals for a collection of NLU tasks is still not available. In this paper, we propose such a benchmark, named WALNUT, to advocate and facilitate research on weak supervision for NLU. WALNUT consists of NLU tasks with different types, including both document-level prediction tasks and token-level prediction tasks and for each task contains weak labels generated by multiple real-world weak sources. We conduct baseline evaluations on the benchmark to systematically test the value of weak supervision for NLU tasks, with various weak supervision methods and model architectures. We demonstrate the benefits of weak supervision for low-resource NLU tasks and expect WALNUT to stimulate further research on methodologies to best leverage weak supervision. The benchmark and code for baselines will be publicly available at aka.ms/walnut_benchmark.
Natural language understanding (NLU) and Natural language generation (NLG) tasks hold a strong dual relationship, where NLU aims at predicting semantic labels based on natural language utterances and NLG does the opposite. The prior work mainly focused on exploiting the duality in model training in order to obtain the models with better performance. However, regarding the fast-growing scale of models in the current NLP area, sometimes we may have difficulty retraining whole NLU and NLG models. To better address the issue, this paper proposes to leverage the duality in the inference stage without the need of retraining. The experiments on three benchmark datasets demonstrate the effectiveness of the proposed method in both NLU and NLG, providing the great potential of practical usage.
In modular dialogue systems, natural language understanding (NLU) and natural language generation (NLG) are two critical components, where NLU extracts the semantics from the given texts and NLG is to construct corresponding natural language sentences based on the input semantic representations. However, the dual property between understanding and generation has been rarely explored. The prior work is the first attempt that utilized the duality between NLU and NLG to improve the performance via a dual supervised learning framework. However, the prior work still learned both components in a supervised manner, instead, this paper introduces a general learning framework to effectively exploit such duality, providing flexibility of incorporating both supervised and unsupervised learning algorithms to train language understanding and generation models in a joint fashion. The benchmark experiments demonstrate that the proposed approach is capable of boosting the performance of both NLU and NLG.
111 - Li Dong , Nan Yang , Wenhui Wang 2019
This paper presents a new Unified pre-trained Language Model (UniLM) that can be fine-tuned for both natural language understanding and generation tasks. The model is pre-trained using three types of language modeling tasks: unidirectional, bidirectional, and sequence-to-sequence prediction. The unified modeling is achieved by employing a shared Transformer network and utilizing specific self-attention masks to control what context the prediction conditions on. UniLM compares favorably with BERT on the GLUE benchmark, and the SQuAD 2.0 and CoQA question answering tasks. Moreover, UniLM achieves new state-of-the-art results on five natural language generation datasets, including improving the CNN/DailyMail abstractive summarization ROUGE-L to 40.51 (2.04 absolute improvement), the Gigaword abstractive summarization ROUGE-L to 35.75 (0.86 absolute improvement), the CoQA generative question answering F1 score to 82.5 (37.1 absolute improvement), the SQuAD question generation BLEU-4 to 22.12 (3.75 absolute improvement), and the DSTC7 document-grounded dialog response generation NIST-4 to 2.67 (human performance is 2.65). The code and pre-trained models are available at https://github.com/microsoft/unilm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا