Do you want to publish a course? Click here

Interlocking Backpropagation: Improving depthwise model-parallelism

100   0   0.0 ( 0 )
 Added by Aidan N. Gomez
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The number of parameters in state of the art neural networks has drastically increased in recent years. This surge of interest in large scale neural networks has motivated the development of new distributed training strategies enabling such models. One such strategy is model-parallel distributed training. Unfortunately, model-parallelism suffers from poor resource utilisation, which leads to wasted resources. In this work, we improve upon recent developments in an idealised model-parallel optimisation setting: local learning. Motivated by poor resource utilisation, we introduce a class of intermediary strategies between local and global learning referred to as interlocking backpropagation. These strategies preserve many of the compute-efficiency advantages of local optimisation, while recovering much of the task performance achieved by global optimisation. We assess our strategies on both image classification ResNets and Transformer language models, finding that our strategy consistently out-performs local learning in terms of task performance, and out-performs global learning in training efficiency.



rate research

Read More

Many concepts have been proposed for meta learning with neural networks (NNs), e.g., NNs that learn to control fast weights, hyper networks, learned learning rules, and meta recurrent NNs. Our Variable Shared Meta Learning (VS-ML) unifies the above and demonstrates that simple weight-sharing and sparsity in an NN is sufficient to express powerful learning algorithms (LAs) in a reusable fashion. A simple implementation of VS-ML called VS-ML RNN allows for implementing the backpropagation LA solely by running an RNN in forward-mode. It can even meta-learn new LAs that improve upon backpropagation and generalize to datasets outside of the meta training distribution without explicit gradient calculation. Introspection reveals that our meta-learned LAs learn qualitatively different from gradient descent through fast association.
For decades, researchers in fields, such as the natural and social sciences, have been verifying causal relationships and investigating hypotheses that are now well-established or understood as truth. These causal mechanisms are properties of the natural world, and thus are invariant conditions regardless of the collection domain or environment. We show in this paper how prior knowledge in the form of a causal graph can be utilized to guide model selection, i.e., to identify from a set of trained networks the models that are the most robust and invariant to unseen domains. Our method incorporates prior knowledge (which can be incomplete) as a Structural Causal Model (SCM) and calculates a score based on the likelihood of the SCM given the target predictions of a candidate model and the provided input variables. We show on both publicly available and synthetic datasets that our method is able to identify more robust models in terms of generalizability to unseen out-of-distribution test examples and domains where covariates have shifted.
Within Transformer, self-attention is the key module to learn powerful context-aware representations. However, self-attention suffers from quadratic memory requirements with respect to the sequence length, which limits us to process longer sequence on GPU. In this work, we propose sequence parallelism, a memory efficient parallelism method to help us break input sequence length limitation and train with longer sequence on GPUs. Compared with existing parallelism, our approach no longer requires a single device to hold the whole sequence. Specifically, we split the input sequence into multiple chunks and feed each chunk into its corresponding device (i.e. GPU). To compute the attention output, we communicate attention embeddings among GPUs. Inspired by ring all-reduce, we integrated ring-style communication with self-attention calculation and proposed Ring Self-Attention (RSA). Our implementation is fully based on PyTorch. Without extra compiler or library changes, our approach is compatible with data parallelism and pipeline parallelism. Experiments show that sequence parallelism performs well when scaling with batch size and sequence length. Compared with tensor parallelism, our approach achieved $13.7times$ and $3.0times$ maximum batch size and sequence length respectively when scaling up to 64 NVIDIA P100 GPUs. We plan to integrate our sequence parallelism with data, pipeline and tensor parallelism to further train large-scale models with 4D parallelism in our future work.
We propose proximal backpropagation (ProxProp) as a novel algorithm that takes implicit instead of explicit gradient steps to update the network parameters during neural network training. Our algorithm is motivated by the step size limitation of explicit gradient descent, which poses an impediment for optimization. ProxProp is developed from a general point of view on the backpropagation algorithm, currently the most common technique to train neural networks via stochastic gradient descent and variants thereof. Specifically, we show that backpropagation of a prediction error is equivalent to sequential gradient descent steps on a quadratic penalty energy, which comprises the network activations as variables of the optimization. We further analyze theoretical properties of ProxProp and in particular prove that the algorithm yields a descent direction in parameter space and can therefore be combined with a wide variety of convergent algorithms. Finally, we devise an efficient numerical implementation that integrates well with popular deep learning frameworks. We conclude by demonstrating promising numerical results and show that ProxProp can be effectively combined with common first order optimizers such as Adam.
Training an agent to solve control tasks directly from high-dimensional images with model-free reinforcement learning (RL) has proven difficult. A promising approach is to learn a latent representation together with the control policy. However, fitting a high-capacity encoder using a scarce reward signal is sample inefficient and leads to poor performance. Prior work has shown that auxiliary losses, such as image reconstruction, can aid efficient representation learning. However, incorporating reconstruction loss into an off-policy learning algorithm often leads to training instability. We explore the underlying reasons and identify variational autoencoders, used by previous investigations, as the cause of the divergence. Following these findings, we propose effective techniques to improve training stability. This results in a simple approach capable of matching state-of-the-art model-free and model-based algorithms on MuJoCo control tasks. Furthermore, our approach demonstrates robustness to observational noise, surpassing existing approaches in this setting. Code, results, and videos are anonymously available at https://sites.google.com/view/sac-ae/home.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا