Do you want to publish a course? Click here

Subgap kinetic inductance detector sensitive to 85-GHz radiation

60   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have fabricated an array of subgap kinetic inductance detectors (SKIDs) made of granular aluminum ($T_csim$2~K) sensitive in the 80-90 GHz frequency band and operating at 300~mK. We measure a noise equivalent power of $1.3times10^{-16}$~W/Hz$^{0.5}$ on average and $2.6times10^{-17}$~W/Hz$^{0.5}$ at best, for an illuminating power of 50~fW per pixel. Even though the circuit design of SKIDs is identical to that of the kinetic inductance detectors (KIDs), the SKIDs operating principle is based on their sensitivity to subgap excitations. This detection scheme is advantageous because it avoids having to lower the operating temperature proportionally to the lowest detectable frequency. The SKIDs presented here are intrinsically selecting the 80-90 GHz frequency band, well below the superconducting spectral gap of the film, at approximately 180 GHz.



rate research

Read More

We demonstrate strong negative electrothermal feedback accelerating and linearizing the response of a thermal kinetic inductance detector (TKID). TKIDs are a proposed highly multiplexable replacement to transition-edge sensors and measure power through the temperature-dependent resonant frequency of a superconducting microresonator bolometer. At high readout probe power and probe frequency detuned from the TKID resonant frequency, we observe electrothermal feedback loop gain up to $mathcal L$ $approx$ 16 through measuring the reduction of settling time. We also show that the detector response has no detectable non-linearity over a 38% range of incident power and that the noise-equivalent power is below the design photon noise.
We demonstrate photon noise limited performance in both phase and amplitude readout in microwave kinetic inductance detectors (MKIDs) consisting of NbTiN and Al, down to 100 fW of optical power. We simulate the far field beam pattern of the lens-antenna system used to couple radiation into the MKID and derive an aperture efficiency of 75%. This is close to the theoretical maximum of 80% for a single-moded detector. The beam patterns are verified by a detailed analysis of the optical coupling within our measurement setup.
Radiation transport simulations were used to analyse neutron imaging with the current-biased kinetic inductance detector (CB-KID). The PHITS Monte Carlo code was applied for simulating neutron, $^{4}$He, $^{7}$Li, photon and electron transport, $^{10}$B(n,$alpha$)$^{7}$Li reactions, and energy deposition by particles within CB-KID. Slight blurring in simulated CB-KID images originated $^{4}$He and $^{7}$Li ions spreading out in random directions from the $^{10}$B conversion layer in the detector prior to causing signals in the $X$ and $Y$ superconducting Nb nanowire meander lines. 478 keV prompt gamma rays emitted by $^{7}$Li nuclei from neutron-$^{10}$B reactions had negligible contribution to the simulated CB-KID images. Simulated neutron images of $^{10}$B dot arrays indicate that sub 10 $mu$m resolution imaging should be feasible with the current CB-KID design. The effect of the geometrical structure of CB-KID on the intrinsic detection efficiency was calculated from the simulations. An analytical equation was then developed to approximate this contribution to the detection efficiency. Detection efficiencies calculated in this study are upper bounds for the reality as the effects of detector temperature, the bias current, signal processing and dead-time losses were not taken into account. The modelling strategies employed in this study could be used to evaluate modifications to the CB-KID design prior to actual fabrication and testing, conveying a time and cost saving.
A microwave kinetic inductance detector (MKID) is a cutting-edge superconducting detector, and its principle is based on a superconducting resonator circuit. The superconducting transition temperature (Tc) of the MKID is an important parameter because various MKID characterization parameters depend on it. In this paper, we propose a method to measure the Tc of the MKID by changing the applied power of the readout microwaves. A small fraction of the readout power is deposited in the MKID, and the number of quasiparticles in the MKID increases with this power. Furthermore, the quasiparticle lifetime decreases with the number of quasiparticles. Therefore, we can measure the relation between the quasiparticle lifetime and the detector response by rapidly varying the readout power. From this relation, we estimate the intrinsic quasiparticle lifetime. This lifetime is theoretically modeled by Tc, the physical temperature of the MKID device, and other known parameters. We obtain Tc by comparing the measured lifetime with that acquired using the theoretical model. Using an MKID fabricated with aluminum, we demonstrate this method at a 0.3 K operation. The results are consistent with those obtained by Tc measured by monitoring the transmittance of the readout microwaves with the variation in the device temperature. The method proposed in this paper is applicable to other types, such as a hybrid-type MKID.
301 - X. Liu , W. Guo , Y. Wang 2017
We present a cryogenic wafer mapper based on light emitting diodes (LEDs) for spatial mapping of a large microwave kinetic inductance detector (MKID) array. In this scheme, an array of LEDs, addressed by DC wires and collimated through horns onto the detectors, is mounted in front of the detector wafer. By illuminating each LED individually and sweeping the frequency response of all the resonators, we can unambiguously correspond a detector pixel to its measured resonance frequency. We have demonstrated mapping a 76.2 mm 90-pixel MKID array using a mapper containing 126 LEDs with 16 DC bias wires. With the frequency to pixel-position correspondence data obtained by the LED mapper, we have found a radially position-dependent frequency non-uniformity < 1.6% over the 76.2 mm wafer. Our LED wafer mapper has no moving parts and is easy to implement. It may find broad applications in superconducting detector and quantum computing/information experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا