Do you want to publish a course? Click here

On the Combined Role of Cosmic Rays and Supernova-Driven Turbulence for Galactic Dynamos

139   0   0.0 ( 0 )
 Added by Abhijit Bendre
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Large-scale coherent magnetic fields observed in the nearby galaxies are thought to originate by a mean-field dynamo. This is governed via the turbulent electromotive force (EMF, $overline{mathcal{E}} $) generated by the helical turbulence driven by supernova (SN) explosions in the differentially rotating interstellar medium (ISM). In this paper we aim to investigate the possibility of dynamo action by the virtue of buoyancy due to a cosmic ray (CR) component injected through the SN explosions. We do this by analysing the magnetohydrodynamic simulations of local shearing box of ISM, in which the turbulence is driven via random SN explosions and the energy of the explosion is distributed in the CR and/or thermal energy components. We use the magnetic field aligned diffusion prescription for the propagation of CR. We compare the evolution of magnetic fields in the models with the CR component to our previous models that did not involve the CR. We demonstrate that the inclusion of CR component enhances the growth of dynamo slightly. We further compute the underlying dynamo coefficients using the test-fields method, and argue that the entire evolution of the large scale mean magnetic field can be reproduced with an $alpha-Omega$ dynamo model. We also show that the inclusion of CR component leads to an unbalanced turbulent pumping between magnetic field components and additional dynamo action by the Radler effect.



rate research

Read More

The fractal shape and multi-component nature of the interstellar medium together with its vast range of dynamical scales provides one of the great challenges in theoretical and numerical astrophysics. Here we will review recent progress in the direct modelling of interstellar hydromagnetic turbulence, focusing on the role of energy injection by supernova explosions. The implications for dynamo theory will be discussed in the context of the mean-field approach. Results obtained with the test field-method are confronted with analytical predictions and estimates from quasilinear theory. The simulation results enforce the classical understanding of a turbulent Galactic dynamo and, more importantly, yield new quantitative insights. The derived scaling relations enable confident global mean-field modelling.
319 - Ya. N. Istomin 2011
It is shown that the relativistic jet, emitted from the center of the Galaxy during its activity, possessed power and energy spectrum of accelerated protons sufficient to explain the current cosmic rays distribution in the Galaxy. Proton acceleration takes place on the light cylinder surface formed by the rotation of a massive black hole carring into rotation the radial magnetic field and the magnetosphere. Observed in gamma, x-ray and radio bands bubbles above and below the galactic plane can be remnants of this bipolar get. The size of the bubble defines the time of the jets start, $simeq 2.4cdot 10^7$ years ago. The jet worked more than $10^7$ years, but less than $2.4cdot10^7$ years.
296 - Jacco Vink 2012
The origin of cosmic rays holds still many mysteries hundred years after they were first discovered. Supernova remnants have for long been the most likely sources of Galactic cosmic rays. I discuss here some recent evidence that suggests that supernova remnants can indeed efficiently accelerate cosmic rays. For this conference devoted to the Astronomical Institute Utrecht I put the emphasis on work that was done in my group, but placed in a broader context: efficient cosmic-ray acceleration and the im- plications for cosmic-ray escape, synchrotron radiation and the evidence for magnetic- field amplification, potential X-ray synchrotron emission from cosmic-ray precursors, and I conclude with the implications of cosmic-ray escape for a Type Ia remnant like Tycho and a core-collapse remnant like Cas A.
146 - E.G. Berezhko 2014
We analyze the results of recent measurements of Galactic cosmic ray (GCRs) energy spectra and the spectra of nonthermal emission from supernova remnants (SNRs) in order to determine their consistency with GCR origin in SNRs. It is shown that the measured primary and secondary CR nuclei energy spectra as well as the observed positron-to-electron ratio are consistent with the origin of GCRs up to the energy 10^17 eV in SNRs. Existing SNR emission data provide evidences for efficient CR production in SNRs accompanied by significant magnetic field amplification. In some cases the nature of the detected gamma-ray emission is difficult to determine because key SNR parameters are not known or poorly constrained.
It is widely believe that galactic cosmic rays are originated in supernova remnants (SNRs) where they are accelerated by diffusive shock acceleration process at supernova blast waves driven by expanding SNRs. In recent theoretical developments of the diffusive shock acceleration theory in SNRs, protons are expected to accelerate in SNRs at least up to the knee energy. If SNRs are true generator of cosmic rays, they should accelerate not only protons but also heavier nuclei with right proportion and the maximum energy of heavier nuclei should be atomic mass (Z) times that of protons. In this work we investigate the implications of acceleration of heavier nuclei in SNRs on energetic gamma rays those are produced in hadronic interaction of cosmic rays with ambient matter. Our findings suggest that the energy conversion efficiency has to be nearly double for the mixed cosmic ray composition instead of pure protons to explain the observation and secondly the gamma ray flux above few tens of TeV would be significantly higher if cosmic rays particles can attain energies Z times of the knee energy in lieu of 200 TeV, as suggested earlier for non-amplified magnetic fields. The two stated maximum energy paradigm will be discriminated in future by the upcoming gamma ray experiments like Cherenkov Telescope array (CTA).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا