Do you want to publish a course? Click here

Supernova-driven interstellar turbulence and the galactic dynamo

158   0   0.0 ( 0 )
 Added by Oliver Gressel
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The fractal shape and multi-component nature of the interstellar medium together with its vast range of dynamical scales provides one of the great challenges in theoretical and numerical astrophysics. Here we will review recent progress in the direct modelling of interstellar hydromagnetic turbulence, focusing on the role of energy injection by supernova explosions. The implications for dynamo theory will be discussed in the context of the mean-field approach. Results obtained with the test field-method are confronted with analytical predictions and estimates from quasilinear theory. The simulation results enforce the classical understanding of a turbulent Galactic dynamo and, more importantly, yield new quantitative insights. The derived scaling relations enable confident global mean-field modelling.



rate research

Read More

Supernovae are the dominant energy source for driving turbulence within the interstellar plasma. Until recently, their effects on magnetic field amplification in disk galaxies remained a matter of speculation. By means of self-consistent simulations of supernova-driven turbulence, we find an exponential amplification of the mean magnetic field on timescales of a few hundred million years. The robustness of the observed fast dynamo is checked at different magnetic Reynolds numbers, and we find sustained dynamo action at moderate Rm. This indicates that the mechanism might indeed be of relevance for the real ISM. Sensing the flow via passive tracer fields, we infer that SNe produce a turbulent alpha effect which is consistent with the predictions of quasilinear theory. To lay a foundation for global mean-field models, we aim to explore the scaling of the dynamo tensors with respect to the key parameters of our simulations. Here we give a first account on the variation with the supernova rate.
Large-scale coherent magnetic fields observed in the nearby galaxies are thought to originate by a mean-field dynamo. This is governed via the turbulent electromotive force (EMF, $overline{mathcal{E}} $) generated by the helical turbulence driven by supernova (SN) explosions in the differentially rotating interstellar medium (ISM). In this paper we aim to investigate the possibility of dynamo action by the virtue of buoyancy due to a cosmic ray (CR) component injected through the SN explosions. We do this by analysing the magnetohydrodynamic simulations of local shearing box of ISM, in which the turbulence is driven via random SN explosions and the energy of the explosion is distributed in the CR and/or thermal energy components. We use the magnetic field aligned diffusion prescription for the propagation of CR. We compare the evolution of magnetic fields in the models with the CR component to our previous models that did not involve the CR. We demonstrate that the inclusion of CR component enhances the growth of dynamo slightly. We further compute the underlying dynamo coefficients using the test-fields method, and argue that the entire evolution of the large scale mean magnetic field can be reproduced with an $alpha-Omega$ dynamo model. We also show that the inclusion of CR component leads to an unbalanced turbulent pumping between magnetic field components and additional dynamo action by the Radler effect.
Supernovae are known to be the dominant energy source for driving turbulence in the interstellar medium. Yet, their effect on magnetic field amplification in spiral galaxies is still poorly understood. Previous analytical models, based on the evolution of isolated, non-interacting supernova remnants, predicted a dominant vertical pumping that would render dynamo action improbable. In the present work, we address the issue of vertical transport, which is thought to be the key process that inhibits dynamo action in the galactic context. We aim to demonstrate that supernova driving is a powerful mechanism to amplify galactic magnetic fields. We conduct direct numerical simulations in the framework of resistive magnetohydrodynamics. Our local box model of the interstellar medium comprises optically-thin radiative cooling, an external gravitational potential, and background shear. Dynamo coefficients for mean-field models are measured by means of passive test fields. Our simulations show that supernova-driven turbulence in conjunction with shear leads to an exponential amplification of the mean magnetic field. We found turbulent pumping to be directed inward and approximately balanced by a galactic wind.
We study the magnetic field evolution of an isolated spiral galaxy, using isolated Milky Way-mass galaxy formation simulations and a novel prescription for magnetohydrodynamic (MHD) supernova feedback. Our main result is that a galactic dynamo can be seeded and driven by supernova explosions, resulting in magnetic fields whose strength and morphology is consistent with observations. In our model, supernovae supply thermal energy, and a low level magnetic field along with their ejecta. The thermal expansion drives turbulence, which serves a dual role by efficiently mixing the magnetic field into the interstellar medium, and amplifying it by means of turbulent dynamo. The computational prescription for MHD supernova feedback has been implemented within the publicly available ENZO code, and is fully described in this paper. This improves upon ENZOs existing modules for hydrodynamic feedback from stars and active galaxies. We find that the field attains $mu G$-levels over Gyr-time scales throughout the disk. The field also develops large-scale structure, which appears to be correlated with the disks spiral arm density structure. We find that seeding of the galactic dynamo by supernova ejecta predicts a persistent correlation between gas metallicity and magnetic field strength. We also generate all-sky maps of the Faraday rotation measure from the simulation-predicted magnetic field, and present a direct comparison with observations.
255 - M. Hanasz 2008
We present new developments on the Cosmic--Ray driven, galactic dynamo, modeled by means of direct, resistive CR--MHD simulations, performed with ZEUS and PIERNIK codes. The dynamo action, leading to the amplification of large--scale galactic magnetic fields on galactic rotation timescales, appears as a result of galactic differential rotation, buoyancy of the cosmic ray component and resistive dissipation of small--scale turbulent magnetic fields. Our new results include demonstration of the global--galactic dynamo action driven by Cosmic Rays supplied in supernova remnants. An essential outcome of the new series of global galactic dynamo models is the equipartition of the gas turbulent energy with magnetic field energy and cosmic ray energy, in saturated states of the dynamo on large galactic scales.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا