No Arabic abstract
It is argued that Planck mass may be considered as a candidate for the mass content of degrees of freedom of holographic screen. In addition, employing the Verlinde hypothesis on emergent gravity and considering holographic screen degrees of freedom as a $q$-deformed fermionic system, it is obtained that the heat capacity per degree of freedom inspires the MOND interpolating function. Moreover, the MOND acceleration is achieved as a function of Planck acceleration. Both ultra-relativistic and non-relativistic statistics are studied.
Holographic screens are the generalization of the event horizon of a black hole in entropic force scheme, which are defined by setting Newton potential $phi$ constant, textit{i. e.} $e^{2phi}=c=$const. By demonstrating that the integrated first law of thermodynamics is equivalent to the ($r-r$) component of Einstein equations, We strengthen the correspondence between thermodynamics and gravity. We show that there are not only the first law of thermodynamics, but also kinds of phase transitions of holographic screens. These phase transitions are characterized by the discontinuity of their heat capacities. In (n+1) dimensional Reissner-Nordstr{o}m-anti-de Sitter (RN-AdS) spacetime, we analyze three kinds of phase transitions, which are of the holographic screens with Q=0 (charge), constant $Phi$ (electrostatic potential) and non-zero constant $Q$. In the Q=0 case, only the holographic screens with $0le c<1$ can undergo phase transition. In the constant $Phi$ case, the constraints become as $0le c+16tilde{Gamma}^{2}Phi^{2}<1$, where $tilde{Gamma}$ is a dimensional dependent parameter. By verifying the Ehrenfest equations, we show that the phase transitions in this case are all second order phase transitions. In the constant $Q$ case, there might be two, or one, or no phase transitions of holographic screens, depending on the values of $Q$ and $c$.
In this paper, by using Verlindes formalism and a modified Padmanabhans prescription, we have obtained the lowest order quantum correction to the gravitational acceleration and MOND-type theory by considering a nonzero difference between the number of bits of the holographic screen and number of bits of the holographic screen that satisfy the equipartition theorem. We will also carry out a phase transition and critical phenomena analysis in MOND-type theory where critical exponents are obtained.
In this paper, we explore the properties of holographic entanglement entropy (HEE), mutual information (MI) and entanglement of purification (EoP) in holographic Lifshitz theory. These informational quantities exhibit some universal properties of holographic dual field theory. For most configuration parameters and temperatures, these informational quantities change monotonously with the Lifshitz dynamical critical exponent $z$. However, we also observe some non-monotonic behaviors for these informational quantities in some specific spaces of configuration parameters and temperatures. A particularly interesting phenomenon is that a dome-shaped diagram emerges in the behavior of MI vs $z$, and correspondingly a trapezoid-shaped profile appears in that of EoP vs $z$. This means that for some specific configuration parameters and temperatures, the system measured in terms of MI and EoP is entangled only in a certain intermediate range of $z$.
Time dependent perturbations of states in the holographic dual of a 3+1 dimensional confining theory are considered. The perturbations are induced by varying the coupling to the theorys most relevant operator. The dual gravitational theory belongs to a class of Einstein-dilaton theories which exhibit a mass gap at zero temperature and a first order deconfining phase transition at finite temperature. The perturbation is realized in various thermal bulk solutions by specifying time dependent boundary conditions on the scalar, and we solve the fully backreacted Einstein-dilaton equations of motion subject to these boundary conditions. We compute the characteristic time scale of many thermalization processes, noting that in every case we examine, this time scale is determined by the imaginary part of the lowest lying quasi-normal mode of the final state black brane. We quantify the dependence of this final state on parameters of the quench, and construct a dynamical phase diagram. Further support for a universal scaling regime in the abrupt quench limit is provided.
We study the time evolution of early universe which is developed by a cosmological constant $Lambda_4$ and supersymmetric Yang-Mills (SYM) fields in the Friedmann-Robertson-Walker (FRW) space-time. The renormalized vacuum expectation value of energy-momentum tensor of the SYM theory is obtained in a holographic way. It includes a radiation of the SYM field, parametrized as $C$. The evolution is controlled by this radiation $C$ and the cosmological constant $Lambda_4$. For positive $Lambda_4$, an inflationary solution is obtained at late time. When $C$ is added, the quantum mechanical situation at early time is fairly changed. Here we perform the early time analysis in terms of two different approaches, (i) the Wheeler-DeWitt equation and (ii) Lorentzian path-integral with the Picard-Lefschetz method by introducing an effective action. The results of two methods are compared.