Do you want to publish a course? Click here

Stochastic sampling effects favor manual over digital contact tracing

552   0   0.0 ( 0 )
 Added by Marco Mancastroppa
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Isolation of symptomatic individuals, tracing and testing of their nonsymptomatic contacts are fundamental strategies for mitigating the current COVID-19 pandemic. The breaking of contagion chains relies on two complementary strategies: manual reconstruction of contacts based on interviews and a digital (app-based) privacy-preserving contact tracing. We compare their effectiveness using model parameters tailored to describe SARS-CoV-2 diffusion within the activity-driven model, a general empirically validated framework for network dynamics. We show that, even for equal probability of tracing a contact, manual tracing robustly performs better than the digital protocol, also taking into account the intrinsic delay and limited scalability of the manual procedure. This result is explained in terms of the stochastic sampling occurring during the case-by-case manual reconstruction of contacts, contrasted with the intrinsically prearranged nature of digital tracing, determined by the decision to adopt the app or not by each individual. The better performance of manual tracing is enhanced by heterogeneity in agent behavior: superspreaders not adopting the app are completely invisible to digital contact tracing, while they can be easily traced manually, due to their multiple contacts. We show that this intrinsic difference makes the manual procedure dominant in realistic hybrid protocols.



rate research

Read More

The COVID-19 infection cases have surged globally, causing devastations to both the society and economy. A key factor contributing to the sustained spreading is the presence of a large number of asymptomatic or hidden spreaders, who mix among the susceptible population without being detected or quarantined. Here we propose an effective non-pharmacological intervention method of detecting the asymptomatic spreaders in contact-tracing networks, and validated it on the empirical COVID-19 spreading network in Singapore. We find that using pure physical spreading equations, the hidden spreaders of COVID-19 can be identified with remarkable accuracy. Specifically, based on the unique characteristics of COVID-19 spreading dynamics, we propose a computational framework capturing the transition probabilities among different infectious states in a network, and extend it to an efficient algorithm to identify asymptotic individuals. Our simulation results indicate that a screening method using our prediction outperforms machine learning algorithms, e.g. graph neural networks, that are designed as baselines in this work, as well as random screening of infections closest contacts widely used by China in its early outbreak. Furthermore, our method provides high precision even with incomplete information of the contract-tracing networks. Our work can be of critical importance to the non-pharmacological interventions of COVID-19, especially with increasing adoptions of contact tracing measures using various new technologies. Beyond COVID-19, our framework can be useful for other epidemic diseases that also feature asymptomatic spreading
The spread of an infectious disease through a population can be modeled using a network or a graph. In digital advertising, internet device graphs are graph data sets that organize identifiers produced by mobile phones, PCs, TVs, and tablets as they access media on the internet. Characterized by immense scale, they have become ubiquitous as they enable targeted advertising, content customization and tracking. This paper posits that internet device graphs, in particular those based on IP colocation, can provide significant utility in predicting and modeling the spread of infectious disease. Starting the week of March 16th, 2020, in the United States, many individuals began to `shelter-in-place as schools and workplaces across the nation closed because of the COVID-19 pandemic. This paper quantifies the effect of the shelter-in-place orders on a large scale internet device graph with more than a billion nodes by studying the graph before and after orders went into effect. The effects are clearly visible. The structure of the graph suggests behavior least conducive to transmission of infection occurred in the US between April 12th and 19th, 2020. This paper also discusses the utility of device graphs for i) contact tracing, ii) prediction of `hot spots, iii) simulation of infectious disease spread, and iv) delivery of advertisement-based warnings to potentially exposed individuals. The paper also posits an overarching question: can systems and datasets amassed by entities in the digital ad ecosystem aid in the fight against COVID-19?
During a pandemic, contact tracing is an essential tool to drive down the infection rate within a population. To accelerate the laborious manual contact tracing process, digital contact tracing (DCT) tools can track contact events transparently and privately by using the sensing and signaling capabilities of the ubiquitous cell phone. However, an effective DCT must not only preserve user privacy but also augment the existing manual contact tracing process. Indeed, not every member of a population may own a cell phone or have a DCT app installed and enabled. We present KHOVID to fulfill the combined goal of manual contact-tracing interoperability and DCT user privacy. At KHOVIDs core is a privacy-friendly mechanism to encode user trajectories using geolocation data. Manual contact tracing data can be integrated through the same geolocation format. The accuracy of the geolocation data from DCT is improved using Bluetooth proximity detection, and we propose a novel method to encode Bluetooth ephemeral IDs. This contribution describes the detailed design of KHOVID; presents a prototype implementation including an app and server software; and presents a validation based on simulation and field experiments. We also compare the strengths of KHOVID with other, earlier proposals of DCT.
106 - Evgeniy Khain 2020
Continuum models of epidemics do not take into account the underlying microscopic network structure of social connections. This drawback becomes extreme during quarantine when most people dramatically decrease their number of social interactions, while others (like cashiers in grocery stores) continue maintaining hundreds of contacts per day. We formulate a two-level model of quarantine. On a microscopic level, we model a single neighborhood assuming a star-network structure. On a mesoscopic level, the neighborhoods are placed on a two-dimensional lattice with nearest neighbors interactions. The modeling results are compared with the COVID-19 data for several counties in Michigan (USA) and the phase diagram of parameters is identified.
Spreading processes have been largely studied in the literature, both analytically and by means of large-scale numerical simulations. These processes mainly include the propagation of diseases, rumors and information on top of a given population. In the last two decades, with the advent of modern network science, we have witnessed significant advances in this field of research. Here we review the main theoretical and numerical methods developed for the study of spreading processes on complex networked systems. Specifically, we formally define epidemic processes on single and multilayer networks and discuss in detail the main methods used to perform numerical simulations. Throughout the review, we classify spreading processes (disease and rumor models) into two classes according to the nature of time: (i) continuous-time and (ii) cellular automata approach, where the second one can be further divided into synchronous and asynchronous updating schemes. Our revision includes the heterogeneous mean-field, the quenched-mean field, and the pair quenched mean field approaches, as well as their respective simulation techniques, emphasizing similarities and differences among the different techniques. The content presented here offers a whole suite of methods to study epidemic-like processes in complex networks, both for researchers without previous experience in the subject and for experts.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا