Do you want to publish a course? Click here

Fluctuations and thermodynamic geometry of the chiral phase transition

254   0   0.0 ( 0 )
 Added by Daniele Lanteri
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We study the thermodynamic curvature, $R$, around the chiral phase transition at finite temperature and chemical potential, within the quark-meson model augmented with meson fluctuations. We study the effect of the fluctuations, pions and $sigma$-meson, on the top of the mean field thermodynamics and how these affect $R$ around the crossover. We find that for small chemical potential the fluctuations enhance the magnitude of $R$, while they do not affect substantially the thermodynamic geometry in the proximity of the critical endpoint. Moreover, in agreement with previous studies we find that $R$ changes sign in the pseudocritical region, suggesting a change of the nature of interactions at the mesoscopic level from statistically repulsive to attractive. Finally, we find that in the critical region around the critical endpoint $|R|$ scales with the correlation volume, $|R| =K;xi^3$, with $K = O(1)$, as expected from hyperscaling; far from the critical endpoint the correspondence between $|R|$ and the correlation volume is not as good as the one we have found at large $mu$, which is not surprising because at small $mu$ the chiral crossover is quite smooth; nevertheless, we have found that $R$ develops a characteristic peak structure, suggesting that it is still capable to capture the pseudocritical behavior of the condensate.



rate research

Read More

We investigate the quark spectrum near but above the critical temperature of the chiral transition, taking into account the precursory soft modes. It is found that there appear novel excitation spectra of quasi-quarks and quasi-antiquarks with a three-peak structure. By a detailed analysis on the formation of the three-peak structure using Yukawa models, it is shown that the new quark spectra originate from the mixing between a quark (anti-quark) and an antiquark hole (quark hole) caused by a resonant scattering of the quasi-quark with the soft modes which have a small but finite excitation energy with a small width near the critical temperature.
We examine the possibility that the physical spectrum of a vector-like gauge field theory exhibits an enhanced global symmetry near a chiral phase transition. A transition from the Goldstone phase to the symmetric phase is expected as the number of fermions N_f is increased to some critical value. Various investigations have suggested that a parity-doubled spectrum develops as the critical value is approached. Using an effective Lagrangian as a guide, we note that parity doubling is associated with the appearance of an enhanced global symmetry in the spectrum of the theory. The enhanced symmetry would develop as the spectrum splits into two sectors, with the first exhibiting the usual pattern of a spontaneously broken chiral symmetry, and the second exhibiting an additional, unbroken symmetry and parity doubling. The first sector includes the Goldstone bosons and other states such as massive scalar partners. The second includes a parity-degenerate vector and axial vector along with other possible parity partners. We note that if such a near-critical theory describes symmetry breaking in the electroweak theory, the additional symmetry suppresses the contribution of the parity doubled sector to the S parameter.
We study the production of entropy in the context of a nonequilibrium chiral phase transition. The dynamical symmetry breaking is modeled by a Langevin equation for the order parameter coupled to the Bjorken dynamics of a quark plasma. We investigate the impact of dissipation and noise on the entropy and explore the possibility of reheating for crossover and first-order phase transitions, depending on the expansion rate of the fluid. The relative increase in S/N is estimated to range from 10% for a crossover to 200% for a first-order phase transition at low beam energies, which could be detected in the pion-to-proton ratio as a function of beam energy.
We construct a novel approach, based on thermodynamic geometry, to characterize first-order phase transitions from a microscopic perspective, through the scalar curvature in the equilibrium thermodynamic state space. Our method resolves key theoretical issues in macroscopic thermodynamic constructs, and furthermore characterizes the Widom line through the maxima of the correlation length, which is captured by the thermodynamic scalar curvature. As an illustration of our method, we use it in conjunction with the mean field Van der Waals equation of state to predict the coexistence curve and the Widom line. Where closely applicable, it provides excellent agreement with experimental data. The universality of our method is indicated by direct calculations from the NIST database.
255 - V. Skokov , B. Friman , F. Karsch 2011
We consider the Polyakov loop-extended two flavor chiral quark--meson model and discuss critical phenomena related with the spontaneous breaking of the chiral symmetry. The model is explored beyond the mean-field approximation in the framework of the functional renormalisation group. We discuss properties of the net-quark number density fluctuations as well as their higher cumulants. We show that with the increasing net-quark number density, the higher order cumulants exhibit a strong sensitivity to the chiral crossover transition. We discuss their role as probes of the chiral phase transition in heavy-ion collisions at RHIC and LHC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا